Skip to main content

Tiny and Tough: Microphytes of East African Soda Lakes

  • Chapter
  • First Online:
Soda Lakes of East Africa

Abstract

Soda lakes of the East African Rift System and their connected hot springs offer environments that promote growth of extremophiles. We provide an overview of the cyanobacterial and algal flora and characterise the taxa observed in these habitats. East African soda lakes (EASL) are listed amongst the most productive ecosystems worldwide. The main driving force of these systems is phytoplankton; extremely high light attenuation minimises growth of phytobenthos, and larger plants occur only sporadically along shores. Some EASL are home to Arthrospira fusiformis, formerly called Spirulina platensis, which is the main food of Lesser Flamingos. This species and other Cyanobacteria are, however, also discussed as a possible cause for sporadic flamingo die-offs.

We summarise the somewhat confused taxonomy of Arthrospira and Spirulina and also show that—contrary to common opinion—Arthrospira blooms are not persistent. Under unfavourable growth conditions, Arthrospira is replaced by other taxa such as the prasinophyte Picocystis salinarum at increased ion concentrations. Besides Cyanobacteria, some of them diazotrophic, the algal community comprises mainly diatoms, coccoid green algae and flagellates of various algal groups. These extreme biotopes are usually treated as systems of low diversity, but, very recently, studies applying molecular tools revealed an unexpected hidden diversity. We demonstrate shifts of the phytoplankton community in these saline alkaline waters and discuss approaches to interpret this phenomenon based on biotic interactions and abiotic factors. Special attention is given to effects of changing salinity on the food web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3—Oscillatoriales. Arch Hydrobiol Suppl 80 (Algol Stud 50–53):327–472

    Google Scholar 

  • Bachmann H (1939) Mission scientifique de l’Omo. Beiträge zur Kenntnis des Phytoplanktons ostafrikanischer Seen. Z Hydrologie 8:119–140

    Article  Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26:925–935

    Article  CAS  Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Pflugmacher S (2005) Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 4:139–150

    Article  CAS  Google Scholar 

  • Ballot A, Dadheech PK, Haande S, Krienitz L (2008) Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies. Microb Ecol 55:608–618

    Article  PubMed  Google Scholar 

  • Baurain D, Renquin L, Grubisic S, Scheldeman P, Belay A, Wilmotte A (2002) Remarkable conservation of internally transcribed spacer sequences of Arthrospira (“Spirulina”) (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from Africa. J Phycol 38:384–393

    Article  CAS  Google Scholar 

  • Belay A (2013) Biology and industrial production of Arthrospira (Spirulina). In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Hoboken, p 736

    Google Scholar 

  • Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J Appl Phycol 5:235–241

    Article  Google Scholar 

  • Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958

    CAS  Google Scholar 

  • Brown LH (1959) The mystery of the flamingos. Country Life Ltd, London

    Google Scholar 

  • Carmichael WW, Azevedo SMFO, An JS, Molica JR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castenholz RW (1989) Subsection III, order Oscillatoriales. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology 3. Williams and Wilkins, Baltimore, pp 1771–1780

    Google Scholar 

  • Castenholz RW (1996) Endemism and biodiversity of thermophilic cyanobacteria. Nova Hedwig 112:33–47

    Google Scholar 

  • Castenholz RW (2001) Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 473–600

    Chapter  Google Scholar 

  • Chalie F, Gasse F (2002) Late Glacial- Holocene diatom record of water chemistry and lake level change from the tropical East African Rift Lake Abiyata (Ethiopia). Palaeogeogr Palaeoclimatol Palaeoecol 187:259–283

    Article  Google Scholar 

  • Choi DH, Noh JH (2009) Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East See. FEMS Microbiol Ecol 69:439–448

    Article  CAS  PubMed  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Codd GA, Metcalf JS, Morrison LF, Krienitz L, Ballot A, Pflugmacher S, Wiegand C, Kotut K (2003) Susceptibility of flamingos to cyanobacterial toxins via feeding. Vet Rec 152:722–723

    CAS  PubMed  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  CAS  PubMed  Google Scholar 

  • Comte K, Coursin T, Carre-Mlouka A (2013) A new genotype in the genus Arthrospira (Oscillatoriales, Cyanobacteria) revealed by a mosaic-like structure of the 16S-23SrRNA intergenic spacer region in strain PCC 9901. Phycologia 52:333–337

    Article  Google Scholar 

  • Dadheech PK, Krienitz L, Kotut K, Ballot A, Casper P (2009) Molecular detection of uncultured cyanobacteria and aminotransferase domains for cyanotoxin production in sediments. FEMS Microbiol Ecol 68:340–350

    Article  CAS  PubMed  Google Scholar 

  • Dadheech PK, Ballot A, Casper P, Kotut K, Novelo E, Lemma B, Pröschold T, Krienitz L (2010) Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 16S-23S ITS and phycocyanin operon sequences. Phycologia 49:361–372

    Article  CAS  Google Scholar 

  • Dadheech PK, Mahoud H, Kotut K, Krienitz L (2012) Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya. Hydrobiologia 691:269–283

    Article  CAS  Google Scholar 

  • Dadheech PK, Glöckner G, Casper P, Kotut K, Mazzoni CJ, Mbedi S, Krienitz L (2013) Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiol Ecol 85:389–401

    Article  CAS  PubMed  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. monographs on algae 2. Indian Council of Agricultural Research, New Delhi, p 686

    Google Scholar 

  • Dinka MO (2012) Analysing the extent (size and shape) of Lake Basaka expansion (Main Ethiopian Rift Valley) using remote sensing and GIS. Lakes Reserv Res Manag 17:131–141

    Article  Google Scholar 

  • Dinka MO, Loiskandl W, Ndambuki JM (2014) Hydrologic modelling for Lake Basaka: development and application of a conceptual water budget model. Environ Monit Assess 186:5363–5379

    Article  PubMed  Google Scholar 

  • Dvořák P, Casamatta DA, Pouličková A, Hašler P, Ondřej V, Sanges R (2014) Synechococcus: 3 billion years of global dominance. Mol Ecol 23:5538–5551

    Article  PubMed  CAS  Google Scholar 

  • Ferroni L, Baldisserotto C, Pantaleoni L, Billi P, Fasulo MP, Pancaldi S (2007) High salinity alters chloroplast morpho-physiology in a freshwater Kirchneriella species (Selenastraceae) from Ethiopian Lake Awasa. Am J Bot 94:1972–1983

    Article  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  CAS  PubMed  Google Scholar 

  • Florenzano G, Sili C, Pelosi E, Vincenzini M (1985) Cyanospira rippkae and Cyanospira capsulata (gen. nov. and spp. nov.): new filamentous heterocystous cyanobacteria from Magadi lake (Kenya). Arch Microbiol 140:301–306

    Article  Google Scholar 

  • Fox RD (1996) Spirulina: production and potential. EDISUD, Aix-en-Provence, 232 pp

    Google Scholar 

  • Fuzinato S, Fodora A, Subakov-Simic G (2010) Arthrospira fusiformis (Voronichin) Komárek et Lund (Cyanoprokaryota)—a new species for Europe. Algol Stud 134:17–24

    Article  CAS  Google Scholar 

  • Gardner NL (1917) New Pacific coast marine algae I. University of California Publications in Botany 6:377–416

    Google Scholar 

  • Gasse F (1986) East African diatoms. Taxonomy, ecological distribution. Bibl Diatomol 11:1–202 + 44 pl

    Google Scholar 

  • Gasse F, Talling JF, Kilham P (1983) Diatom assemblages in East Africa: classification, distribution and ecology. Rev Hydrobiol Trop 16:3–34

    Google Scholar 

  • Geitler L (1925) Cyanophyceae. In: Pascher A (ed) Die Süßwasser-Flora Deutschlands, Österreichs und der Schweiz, 12. Gustav Fischer, Jena, p 450

    Google Scholar 

  • Girma MB, Kifle D, Jebessa H (2012) Deep underwater seismic explosion experiments and their possible ecological impact—the case of Lake Arenguade-Central Ethiopian highlands. Limnologica 42:212–219

    Article  CAS  Google Scholar 

  • Githaiga JM (2003) Ecological Factors Determining utilization patterns and interlake movements of lesser flamingos (Phoeniconaias minor Geoffrey) in Kenyan alkaline lakes. Dissertation, University of Nairobi, p 228

    Google Scholar 

  • Gomont M (1892) Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie—Lyngbyées Annales des Sciences Naturelles Botanique Série 7:91–264

    Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Lett 75:255–269

    Article  CAS  Google Scholar 

  • Greichus YA, Greichus A, Amman BB, Hopcraft J (1978) Insecticides, polychlorinated biphenyls and metals in African lake ecosystems. III. Lake Nakuru, Kenya. Bull Environ Contam Toxicol 19:454–461

    Article  CAS  PubMed  Google Scholar 

  • Hammer UT (1978) The Saline lakes of Saskatchewan III. Chemical characterization. Internationale Revue der gesamten Hydrobiologie und Hydrographie 63:311–335

    Article  CAS  Google Scholar 

  • Hammer UT, Shamess J, Haynes RC (1983) The distribution and the abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105:1–26

    Article  Google Scholar 

  • Harper DM, Childress RB, Harper MM, Boar RR, Hickley PH, Mills SC, Otieno N, Drane T, Vareschi E, Nasirwa O, Mwatha WE, Darlington JPEC, Escuté-Gasulla X (2003) Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 500:259–276

    Article  Google Scholar 

  • Hasle GR (1978) Some freshwater and brackish water species of diatom genus Thalassiosira Cleve. Phycologia 17:263–292

    Article  Google Scholar 

  • Hecky RE, Kilham P (1973) Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol Oceanogr 18:53–71

    Article  CAS  Google Scholar 

  • Hill DRA, Wetherbee R (1990) Guillardia theta gen. et sp. nov. (Cryptophyceae). Can J Bot 68:1873–1876

    Article  Google Scholar 

  • Hindák F (1985) Morphology of trichomes in Spirulina fusiformis Voronichin from Lake Bogoria, Kenya. Arch Hydrobiol Suppl 71 (Algol Stud 38/39):201–218

    Google Scholar 

  • Hindák F (1992) Several interesting planktic cyanophytes. Algol Stud 66:1–15

    Google Scholar 

  • Hindák F (2001) Thermal microorganisms from a hot spring on the coast of Lake Bogoria. Kenya. Nova Hedwig 123:77–93

    Google Scholar 

  • Hoffman LR (1983) Atractomorpha echinata gen. et sp. nov., a new anisogamous member of the Sphaeropleaceae (Chlorophyceae). J Phycol 19:76–86

    Article  Google Scholar 

  • Iltis A (1968) Tolerance de salinite de Spirulina platensis (Gom.). Geitl., (Cyanophyta) dans les mares natronees du Kanem (Tchad). Cahiers O.R.S.T.O.M—Série Hydrobiologie 2:119–125

    Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2002) rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 148:481–496

    Article  CAS  PubMed  Google Scholar 

  • Iwasa M, Yamamoto M, Tanaka Y, Kaito M, Adach Y (2002) Spirulina-associated hepatotoxicity. Am J Gastroenterol 97:3212–3213

    Article  PubMed  Google Scholar 

  • Jenkin PM (1929) Biology of lakes in Kenya. Nature 124:574

    Article  Google Scholar 

  • Jirsa F, Gruber M, Stojanovic A, Odour SO, Mader D, Körner W, Schagerl M (2013) Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme drought. Chem Erde-Geochem 73:275–282

    Article  CAS  Google Scholar 

  • Kachiuru RM (2009) Microbial diversity of Lake Elmenteita, Kenya. Dissertation, University of Agriculture and Technology

    Google Scholar 

  • Kaggwa MN, Gruber M, Oduor SO, Schagerl M (2012) A detailed time series assessment of the diet of Lesser Flamingos: further explanation for their itinerant behaviour. Hydrobiologia 710:83–93

    Article  CAS  Google Scholar 

  • Kaggwa MN, Burian A, Oduor SO, Schagerl M (2013) Ecomorphological variability of Arthrospira fusiformis (Cyanoprokaryota) in African soda lakes. Microbiol Open 2:881–891

    CAS  Google Scholar 

  • Kairu JK (1996) Heavy metals residues in birds of Lake Nakuru, Kenya. Afr J Ecol 34:397–400

    Article  Google Scholar 

  • Källqvist T, Lien L, Liti D (1988) Lake Turkana Limnological Study 1985–1988. NIVA Norwegian Institute for Water Research report No. 0-85313, Oslo, p 98

    Google Scholar 

  • Kebede E (1997) Response of Spirulina platensis (= Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. J Appl Phycol 9:551–558

    CAS  Google Scholar 

  • Kebede E (2002) Phytoplankton distribution in lakes of the Ethiopian Rift Valley. In: Tudorancea C, Taylor WD (eds) Ethiopian Rift Valley Lakes. Backhuys Publishers, Leiden, pp 61–93

    Google Scholar 

  • Kebede E, Ahlgren G (1996) Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis)(Cyanophyta) from lake Chitu, Ethiopia. Hydrobiologia 332:99–109

    Article  CAS  Google Scholar 

  • Kebede E, Willén E (1996) Anabaenopsis abijatae, a new cyanophyte from Lake Abijata, an alkaline, saline lake in the Ethiopian Rift Valley. Algol Stud 80:1–8

    Google Scholar 

  • Kebede E, Willén E (1998) Phytoplankton in a salinity-alkalinity series of lakes in the Ethiopian Rift valley. Algol Stud 89:63–96

    Google Scholar 

  • Kihwele ES, Lugomela C, Howell KM (2014) Temporal changes in the Lesser Flamingos population (Phoenicopterus minor) in relation to phytoplankton abundance in Lake Manyara, Tanzania. Open J Ecol 4:145–161

    Article  Google Scholar 

  • Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microbial Ecol 55:453–465

    Article  Google Scholar 

  • Kock ND, Kock RA, Wambua J, Kamau GJ, Mohan K (1999) Mycobacterium avium-related epizootic in free ranging Lesser Flamingos in Kenya. J Wildl Dis 35:297–300

    Article  CAS  PubMed  Google Scholar 

  • Koenig R (2006) The pink death: Die-offs of the Lesser Flamingo raise concern. Science 313:1724–1725

    Article  CAS  PubMed  Google Scholar 

  • Kolding J (1992) A summary of Lake Turkana—an ever changing environment. Mitt Internat Verein Limnol 23:25–35

    Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotypic and ecological consequences (genus and species concept). Hydrobiologia 639:245–259

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa 19/2. Spektrum Akademischer Verlag, Heidelberg, p 759

    Google Scholar 

  • Komárek J, Lund JWG (1990) What is “Spirulina platensis” in fact? Algol Stud 58:1–13

    Google Scholar 

  • Komárek J, Mareš J (2012) An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 698:327–351

    Article  CAS  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Korelusová J, Kaštovský J, Komárek J (2009) Diversity of the cyanobacterial genus Synechocystis Sauvegeau and Geminocystis genus nova. J Phycol 45:928–937

    Article  PubMed  CAS  Google Scholar 

  • Kotut K, Ballot A, Krienitz L (2006) Toxic cyanobacteria and their toxins in standing waters of Kenya: implications for water resource use. J Water Health 4:233–245

    CAS  PubMed  Google Scholar 

  • Kotut K, Krienitz L (2011) Does the potentially toxic cyanobacterium Microcystis exist in the soda lakes of East Africa? Hydrobiologia 664:219–225

    Article  CAS  Google Scholar 

  • Krienitz L, Ballot A, Casper P, Kotut K, Wiegand C, Pflugmacher S (2005) Cyanobacteria in hot springs of East Africa and their potential toxicity. Algol Stud 117:297–306

    Article  Google Scholar 

  • Krienitz L, Ballot A, Kotut K, Wiegand C, Pütz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 1437:141–148

    Article  Google Scholar 

  • Krienitz L, Bock C, Nozaki H, Wolf M (2011) SSU rRNA gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent-shaped Chlorophyta. J Phycol 47:880–893

    Article  PubMed  Google Scholar 

  • Krienitz L, Bock C, Kotut K, Luo W (2012) Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa. Phycologia 51:22–32

    Article  Google Scholar 

  • Krienitz L, Dadheech PK, Kotut K (2013a) Mass developments of a small sized ecotype of Arthrospira fusiformis in Lake Oloidien, Kenya, a new feeding ground for Lesser Flamingos in East Africa. Fottea 13:215–225

    Article  Google Scholar 

  • Krienitz L, Dadheech PK, Kotut K (2013b) Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 703:79–93

    Article  CAS  Google Scholar 

  • Krienitz L, Kotut K (2010) Fluctuating algal food populations and the occurrence of Lesser Flamingos (Phoeniconaias minor) in three Kenyan Rift Valley lakes. J Phycol 46:1088–1096

    Article  Google Scholar 

  • Krienitz L, Krienitz D, Dadheech PK, Hübener T, Kotut K, Luo W, Teubner K, Versfeld WD (2016) Algal food for Lesser Flamingos: a stocktaking. Hydrobiologia 775:21–50

    Article  CAS  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummsa T, Bekele A (2014) Feeding ecology of Lesser Flamingos (Phoeniconaias minor) in Abijata-Shalla Lakes National Park (ASLNP) with special reference to lakes Abijata and Chitu, Ethiopia. Asian J Biol Sci 7:57–67

    Article  Google Scholar 

  • Lamb HF (2001) Multi-Proxy Records of Holocene climate and vegetation change from Ethiopian crater lakes. Biol Environ Proc Roy Irish Acad 101B:35–46

    Google Scholar 

  • Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 8, e72577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewin RA, Krienitz L, Goericke R, Takeda H, Hepperle D (2000) Picocystis salinarum gen.et sp. nov. (Chlorophyta)—a new picoplanktonic green alga. Phycologia 39:560–65

    Article  Google Scholar 

  • Lewis WM Jr (1996) Tropical lakes: how latitude makes a difference. In: Schiemer F, Boland KT (eds) Perspectives in tropical limnology. SPB Academic Publishing, Amsterdam, pp 43–64

    Google Scholar 

  • Lugomela C, Pratap HB, Mgaya YD (2006) Cyanobacteria blooms—a possible cause of mass mortality of Lesser Flamingos in Lake Manyara and Lake Big Momela, Tanzania. Harmful Algae 5:534–541

    Article  Google Scholar 

  • Luo W, Kotut K, Krienitz L (2013) Hidden diversity of eukaryotic plankton in the soda lake Nakuru, Kenya, during a phase of low salinity revealed by a SSU rRNA gene clone library. Hydrobiologia 702:95–103

    Article  CAS  Google Scholar 

  • Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Milkas AN, Ganotakis ES (2008) Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis). Phytomedicine 15:525–527

    Article  PubMed  Google Scholar 

  • Melack JM (1976) Limnology and dynamics of phytoplankton in equatorial African lakes. PhD Thesis, Duke University, Durham, NC, 453p

    Google Scholar 

  • Melack JM (1979a) Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol Oceanogr 24:753–760

    Article  Google Scholar 

  • Melack JM (1979b) Temporal variability of phytoplankton in tropical lakes. Oecologia 44:1–7

    Article  Google Scholar 

  • Melack JM (1982) Photosynthetic activity and respiration in an equatorial African soda lake. Freshw Biol 12:381–400

    Article  Google Scholar 

  • Melack JM (1988) Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158:1–14

    Article  CAS  Google Scholar 

  • Melack JM, Kilham P (1974) Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol Oceanogr 19:743–755

    Article  CAS  Google Scholar 

  • Melack JM, Kilham P, Fisher TR (1982) Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African Soda Lake. Oecologia 52:321–326

    Article  Google Scholar 

  • Mesbah NM, Wiegel J (2011) Halophiles exposed concomitantly to multiple stressors: adaptive mechanisms of halophilic alkalithermophiles. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Heidelberg, pp 249–273

    Chapter  Google Scholar 

  • Metcalf JS, Morrison LF, Krienitz L, Ballot A, Krause E, Kotut K, Pütz S, Wiegand C, Pflugmacher S, Codd GA (2006) Analysis of cyanotoxins anatoxin-a and microcystins in Lesser Flamingo feathers. Toxicol Environ Chem 88:159–167

    Article  CAS  Google Scholar 

  • Metcalf JS, Banack SA, Kotut K, Krienitz L, Codd GA (2013) Amino acid neurotoxins in feathers of the Lesser Flamingo, Phoeniconaias minor. Chemosphere 90:835–839

    Article  CAS  PubMed  Google Scholar 

  • Mikhodyuk OS, Gerasimenko LM, Akimov VN, Ivanovsky RN, Zavarzin GA (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Microbiology 77:717–725

    Article  CAS  Google Scholar 

  • Miklaszewska M, Waleron M, Morin N, Calusinska M, Wilmotte A, De Marsac NT, Rippka R, Waleron K (2012) Elucidation of the gas vesicle gene clusters in cyanobacteria of the genus Arthrospira (Oscillatoriales, Cyanophyta) and correlation with ITS phylogeny. Eur J Phycol 47:233–244

    Article  Google Scholar 

  • Milbrink G (1977) On the limnology of two alkaline lakes (Nakuru and Naivasha) in the East Rift Valley System in Kenya. Int Rev Ges Hydrobiol Hydrograph 62:1–17

    Article  CAS  Google Scholar 

  • Mlingwa C, Baker N (2006) Lesser Flamingo Phoenicopterus minor counts in Tanzanian soda lakes: implications for conservation. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 230–233

    Google Scholar 

  • Motelin G, Thampy R, Doros D (2000) An ecotoxicological study of the potential roles of metals, pesticides and algal toxins on the 1993/5 Lesser Flamingo mass die-offs in Lake Bogoria and Nakuru, Kenya; and the health status of the same species of birds in the Rift Valley Lakes during the 1990s. Proc East Afr Environ Forum 2000:11–12

    Google Scholar 

  • Mourente G, Lubián LM, Odriozola JM (1990) Total fatty acid composition as a taxonomic index of some marine microalgae used as food in marine aquaculture. Hydrobiologia 203:147–154

    Article  CAS  Google Scholar 

  • Mpawenayo B, Mathooko JM (2004) Diatom assemblages in the hotsprings associated with Lakes Elmenteita and Baringo in Kenya. Afr J Ecol 42:363–367

    Article  Google Scholar 

  • Mussagy A, Annadotter H, Cronberg G (2006) An experimental study of toxin production in Arthrospira fusiformis (Cyanophyceae) isolated from African waters. Toxicon 48:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Ndetei R, Muhandiki VS (2005) Mortalities of lesser flamingos in Kenyan Rift Valley saline lakes and the implications for sustainable management of the lakes. Lakes Reserv Res Manag 10:51–8

    Article  Google Scholar 

  • Nelissen B, Wilmotte A, Neefs JM, De Wachter R (1994) Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal-RNA gene sequence analysis. Syst Appl Microbiol 17:206–210

    Article  CAS  Google Scholar 

  • Njugana SG (1988) Nutrient–phytoplankton relationships in a tropical meromictic soda lake. Hydrobiologia 158:15–28

    Article  Google Scholar 

  • Oduor SO, Schagerl M (2007a) Phytoplankton photosynthetic characteristics in three Kenyan Rift Valley saline-alkaline lakes. J Plankton Res 29:1041–1050

    Article  CAS  Google Scholar 

  • Oduor SO, Schagerl M (2007b) Temporal trends of ion contents and nutrients in three Kenyan Rift Valley saline-alkaline lakes and their influence on phytoplankton biomass. Hydrobiologia 584:59–68

    Article  CAS  Google Scholar 

  • Ogato T, Kifle D (2014) Morphological variability of Arthrospira (Spirulina) fusiformis (Cyanophyta) in relation to environmental variables in the tropical soda lake Chitu, Ethiopia. Hydrobiologia 738:21–33

    Article  CAS  Google Scholar 

  • Owen RB, Renaut RW, Hover VC, Ashley GM, Muasya AM (2004) Swamps, springs and diatoms: wetlands of semi-arid Bogoria-Baringo Rift, Kenya. Hydrobiologia 518:59–78

    Article  Google Scholar 

  • Padisák J (2009) The psychogeography of freshwater algae. In: Likens G (ed) Encyclopedia of inland waters, vol I. Elsevier, Oxford, pp 219–223

    Chapter  Google Scholar 

  • Papapetropoulos S (2007) Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-l-alanine (BMAA) paradigm. Neurochem Int 50:998–1003

    Article  CAS  PubMed  Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    Article  CAS  PubMed  Google Scholar 

  • Peduzzi P, Gruber M, Gruber M, Schagerl M (2014) The virus’s tooth—cyanophages affect the flamingo population of an African soda lake in a bottom up cascade. ISME J 8:1346–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoryelov D, Sudhir PR, Kovács L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437

    Article  CAS  PubMed  Google Scholar 

  • Renaut RW, Owen RB, Ego JK (2008) Recent changes in geyser activity at Loburu, Lake Bogoria, Kenya Rift Valley. GOSA Trans 10:4–7

    Google Scholar 

  • Renaut RW, Owen RB, Jones B, Tiercelins J-J, Tarits C, Ego JK, Konhauser KO (2013) Impact of lake-level changes on the formation of thermogene travertine in continental rifts: evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology 60:428–468

    Article  CAS  Google Scholar 

  • Rich F (1932) Reports on the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929.—IV. Phytoplankton from the Rift Valley Lakes in Kenya. Annu Mag Nat Hist Ser 10 10:233–262

    Google Scholar 

  • Richardson JL, Richardson AE (1972) History of an African Rift Lake and its climatic implications. Ecol Monogr 42:499–534

    Article  Google Scholar 

  • Roesler CS, Culbertson CW, Etheridge SM, Goericke R, Kiene RP, Miller LG, Oremland RS (2002) Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnol Oceanogr 47:440–452

    Article  CAS  Google Scholar 

  • Roubeix V, Chalié F, Gasse F (2014) The diatom Thalassiosira faurii (Gasse) Hasle in the Ziway–Shala lakes (Ethiopia) and implications for paleoclimatic reconstructions: case study of the Glacial–Holocene transition in East Africa. Palaeogeogr Palaeoclim Palaeoecol 402:104–112

    Article  Google Scholar 

  • Schagerl M, Oduor SO (2008) Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes. Mar Freshw Res 59:125–136

    Article  CAS  Google Scholar 

  • Schagerl M, Burian A, Gruber-Dorninger M, Oduor SO, Kaggwa MN (2015) Phytoplankton succession of African soda lakes with a special focus on Arthrospira fusiformis. Fottea 15:245–257

    Article  Google Scholar 

  • Scheldeman P, Baurain D, Bouhy R, Scott M, Mühling M, Whitton BA, Belay A, Wilmotte A (1999) Arthrospira (‘Spirulina’) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiol Lett 172:213–222

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger P, Belkin S, Boussiba S (1996) Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J Phycol 32:608–613

    Article  CAS  Google Scholar 

  • Sileo L, Grootenhuise JG, Tuite GH, Hopcraft HD (1979) Microbacteriosis in the lesser flamingo of Lake Nakuru, Kenya. J Wildl Dis 15:387–390

    Article  CAS  PubMed  Google Scholar 

  • Sili C, Mascalchi C, Ventura S (2011) Evolutionary differentiation of the sister cyanobacterial genera Cyanospira Florenzano, Sili, Pelosi et Vincenzini and Anabaenopsis (Woloszynska) Miller in response to extreme life conditions. Fottea 11:107–117

    Article  Google Scholar 

  • Sili C, Torzillo G, Vonshak A (2012) Arthrospira (Spirulina). In: Whitton BA (ed) Ecology of Cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 677–705

    Chapter  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Sommer U, Adrian R, De Senerpont DL, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448

    Article  Google Scholar 

  • Steidinger KA, Landsberg JH, Mason PL, Vogelbein WK, Tester PA, Litaker RW (2006) Cryptoperidiniopsis broadyi gen. et sp. nov. (Dinophyceae), a small lightly armoured dinoflagellate in the Pfiesteriaceae. J Phycol 42:951–961

    Article  Google Scholar 

  • Stewart I, Seawright AA, Shaw GR (2008) Cyanobacterial poisoning in livestock, wild mammals and birds—an overview. In: Kenneth HH (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, Heidelberg, pp 613–638

    Chapter  Google Scholar 

  • Stizenberger E (1852) Spirulina and Arthrospira (nov. gen.). Hedwigia 1:32–41

    Google Scholar 

  • Straubinger-Gansberger N, Lawton L, Gruber M, Kaggwa MN, Oduor SO, Schagerl M (2014) Cyanobacterial toxins in East African Rift Valley lakes—do they really cause flamingo mass mortality? Wildl Biol 20:185–189

    Article  Google Scholar 

  • Talling JF, Wood RB, Prosser V, Baxter RM (1973) The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshw Biol 3:53–76

    Article  Google Scholar 

  • Tebbs EJ, Remedios JJ, Harper DM (2013) Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens Environ 135:92–106

    Article  Google Scholar 

  • Tomaselli L (1997) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 1–15

    Google Scholar 

  • Tomaselli L, Giovanetti L, Sacchi A, Margheri MC (1981) On the mechanism of trichome breakage in Spirulina platensis and S. maxima. Ann Microbiol 31:27–31

    Google Scholar 

  • Ton T (2007) Pink starvation: Flamingos in Africa malnourished. http://en.epochtimes.com/news/7-1-23/50812.html. Accessed 18 Jan 2015

  • Tonk L, Bosch K, Visser PM, Huisman J (2007) Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecol 46:117–123

    Article  Google Scholar 

  • Tuite CH (1981) Standing crop densities and distribution of Spirulina and benthic diatoms in East African alkaline saline lakes. Freshw Biol 11:345–360

    Article  Google Scholar 

  • Tuite CH (2000) The distribution and density of Lesser Flamingos in East Africa in relation to food availability and productivity. Waterbirds (Spec Publ) 23:52–63

    Article  Google Scholar 

  • Vareschi E (1978) The ecology of Lake Nakuru (Kenya) I. Abundance and feeding of the Lesser Flamingo. Oecologia 32:11–35

    Article  Google Scholar 

  • Vareschi E (1982) The ecology of Lake Nakuru (Kenya) III. Abiotic factors and primary production. Oecologia 55:81–101

    Article  Google Scholar 

  • Vareschi E, Jacobs J (1985) The ecology of Lake Nakuru VI. Synopsis of production and energy flow. Oecologia 65:412–424

    Article  Google Scholar 

  • Vareschi E, Melack JM, Kilham P (1981) Saline waters. In: Symoens JJ, Burgis MJ, Gaudet JJ (eds) The ecology and utilization of African inland waters. UNEP Reports and Proceeding Series No. 1, Nairobi, pp 93–102

    Google Scholar 

  • Verschuren D, Cocquyt C, Tibby J, Roberts CN, Leavitt PR (1999) Long-term dynamics of algal and invertebrate communities in a small, fluctuating tropical soda lake. Limnol Oceanogr 44:1216–1231

    Article  Google Scholar 

  • Viti C, Ventura S, Lotti E, Capolino E, Tomaselli L, Giovannetti L (1997) Genotypic diversity and typing of cyanobacterial strains of the genus Arthrospira by very sensitive total DNA restriction profile analysis. Res Microbiol 148:605–611

    Article  CAS  PubMed  Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15:233–247

    Article  Google Scholar 

  • Vonshak A, Tomaselli L (2000) Arthrospira (Spirulina): systematics and eco-physiology. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 505–522

    Google Scholar 

  • Walsby AE, Van Rijn J, Cohan Y (1983) The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake. Proc R Soc Lond B 217:417–447

    Article  Google Scholar 

  • Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158:29–67

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Krienitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krienitz, L., Schagerl, M. (2016). Tiny and Tough: Microphytes of East African Soda Lakes. In: Schagerl, M. (eds) Soda Lakes of East Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-28622-8_6

Download citation

Publish with us

Policies and ethics