Skip to main content

Soda Lakes of the East African Rift System: The Past, the Present and the Future

  • Chapter
  • First Online:

Abstract

The soda lakes of the East African Rift System are unique water bodies whose formation, topography and locational settings have conferred upon them endorheic basin features with arid to semiarid climatic conditions. These features, together with the geological characteristics of their catchments, have favoured the development of saline alkaline properties that make them peculiar and important from a number of perspectives. Most of these lakes have extreme environmental characteristics shown by high ionic contents of their water, high temperature conditions and eutrophic states. This enables them to support growth of few tolerant species of extremophilic Cyanobacteria and other microbes. Some of these lakes such as the Lakes Nakuru and Bogoria are highly productive, yielding some of the highest primary production rates in the world. This high productivity supports hundreds of thousands to, sometimes, millions of Lesser Flamingos in these two lakes. These lakes, however, are highly vulnerable to climate changes and environmental degradation associated with human activities due to their unique environmental conditions. This paper explores some of these unique features, the threats to their existence, the challenges to their conservation and potential strategies to protect them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcocer I, Escobar E (1990) The drying up of the Mexican Plateau axalapazcos. Salinet 4:34–36

    Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf SJ, Codd AG, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline rift valley lakes of Kenya-Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26:925–935

    Article  CAS  Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Pflugmacher S (2005) Cyanobacteria and cyanobacterial toxins in the alkaline crater Lakes Sonachi and Simbi, Kenya. Harmful Algae 4:139–150

    Article  CAS  Google Scholar 

  • Ballot A, Kotut K, Novelo E, Krienitz L (2009) Changes of phytoplankton communities in Lakes Naivasha and Oloidien, examples of degradation and salinization of lakes in the Kenyan rift valley. Hydrobiologia 632:359–363

    Article  CAS  Google Scholar 

  • Baumgarte S (2003) Microbial diversity of soda lake habitats. Dissertation, Gemeinsame Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig

    Google Scholar 

  • Beadle LC (1932) Scientific results of the Cambridge expedition to the East African Lakes 1930–1. 4. The waters of some East African Lakes in relation to their fauna and flora. J Linn Soc Lond Zool 38:157–211

    Article  Google Scholar 

  • Burgis M, Morris P (1987) The natural history of Lakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Childress B, Hughes B, Harper D, Van den Bosche W (2007) The East African flyway and key site network of the lesser flamingo (Phoenicopterus minor) documented through satellite tracking. Ostrich 78:463–468

    Article  Google Scholar 

  • Czech B (2003) Technological progress and biodiversity conservation: a dollar spent, a dollar burned. Conserv Biol 17:1455–1457

    Article  Google Scholar 

  • Czech B (2008) Prospects for reconciling the conflict between economic growth and biodiversity conservation with technological progress. Conserv Biol 22:1389–1398

    Article  PubMed  Google Scholar 

  • Dadheech PK, Mahmoud H, Kotut K, Krienitz L (2014) Desertifilum fontinale sp. nov. (Oscillatoriales, Cyanobacteria) from a warm spring in East Africa, based on conventional and molecular studies. Fottea Olomouc 14:129–140

    Article  Google Scholar 

  • Davison I, Steel I, Taylor M, Beirne EO, Faull T (2014) Exploration: the East African rift system. Geol Explor 11:26–31

    Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, Van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191

    Article  CAS  Google Scholar 

  • Ebinger CJ, Yamane T, Kelley S (1993) Volcanism and extension between the main Ethiopian and Gregory Rifts. In: Thorweihe U, Schdelmeier H (eds) Geoscientific research in Northeast Africa. Balkema, Rotterdam, pp 301–304

    Google Scholar 

  • Gichuhi M (2013) Ecological management of the Mau catchment area and its impact on Lake Nakuru National Park. J Agric Sci Technol 15:81–101

    Google Scholar 

  • Grant WD (2006) Alkaline environments and biodiversity. In: Gerday C, Glansdorff N Extremophiles. Encyclopedia of life support systems (EOLSS), Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford. http://www.eolss.net. Accessed Nov 2015

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

    Article  CAS  Google Scholar 

  • Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145

    Article  CAS  PubMed  Google Scholar 

  • Harper DM, Mavuti KM, Muchiri SM (1990) Ecology and management of Lake Naivasha, Kenya, in relation to climatic change, alien species’ introductions and agricultural development. Environ Conserv 17:328–335

    Article  Google Scholar 

  • Harper DM, Childress RB, Harper MM, Boar RR, Mills SC, Otieno N, Drane T, Vareschi E, Nasirwa O, Mwatha WE, Darlington JPEC, Escuté-Gasulla X (2003) Aquatic biodiversity and saline lakes : Lake Bogoria National Reserve, Kenya. Hydrobiologia 500:259–276

    Google Scholar 

  • Holmes A (1978) Holmes principles of physical geology, 3rd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Hughes L (2008) Mining the Maasai reserve: the story of Magadi. J East Afr Stud 2:134–164

    Article  Google Scholar 

  • IPCC (Inter-governmental Panel on Climate Change) (2007) Contribution of working group I to the 4th assessment report of the inter-governmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Jellison R, Williams DW, Timms B, Alcocer J, Aladin NV (2008) Salt lakes: values, threats and future. In: Polunin NVC (ed) Aquatic ecosystems. Cambridge University Press, Cambridge, pp 94–110

    Chapter  Google Scholar 

  • Jirsa F, Gruber M, Stojanovic A, Oduor SO, Mader D, Körner W, Schagerl M (2013) Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme drought. Chem Erde-Geochem 73:275–283

    Article  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  CAS  PubMed  Google Scholar 

  • Kadigi RMJ, Mwathe K, Dutton A, Kashaigili J, Kilima F (2014) Soda ash mining in lake Natron: a reap or ruin for Tanzania? J Environ Conserv Res 2:37–49. doi:10.12966/jecr.05.01.2014

    Google Scholar 

  • Kairu JK (1996) Heavy metal residues in birds of Lake Nakuru, Kenya. Afr J Ecol 34:397–400

    Article  Google Scholar 

  • Kock ND, Kock RA, Wambua J, Kamau GJ, Mohan K (1999) Mycobacterium avium-related epizootic in free ranging lesser flamingos in Kenya. J Wildl Dis 35:29–300

    Google Scholar 

  • Krienitz L, Kotut K (2010) Fluctuating algal food populations and the occurrence of lesser flamingos (Phoeniconaias minor) in three Kenyan rift valley lakes. J Phycol 46:1088–1096

    Article  Google Scholar 

  • Krienitz L, Ballot A, Kotut K, Wiegand C, Pütz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of lesser flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43:141–148

    Article  CAS  PubMed  Google Scholar 

  • Krienitz L, Bock C, Kotut K, Luo W (2012) Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa. Phycologia 51:22–32

    Article  Google Scholar 

  • Krienitz L, Dadheech PK, Kotut K (2013) Mass developments of a small sized ecotype of Arthrospira fusiformis in Lake Oloidien, Kenya, a new feeding ground for lesser flamingos in East Africa. Fottea Olomouc 13:215–225

    Article  Google Scholar 

  • Luo W, Kotut K, Krienitz L (2012) Hidden diversity of plankton in the soda lake Nakuru, Kenya, during a phase of low salinity revealed by SSU rRNA gene clone library. Hydrobiologia. doi:10.1007/s10750-012-1310-y

    Google Scholar 

  • Mari C, Collar C (2000) Pink Africa. The Harvill Press, London

    Google Scholar 

  • Melack JM (1979) Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol Oceanogr 24:753–760

    Article  Google Scholar 

  • Melack JM (1981) Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81:71–85

    Article  Google Scholar 

  • Melack JM (1988) Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158:1–14

    Article  CAS  Google Scholar 

  • Melack JM (1996) Recent development in tropical limnology. Verh Internat Verein Theor Angew Limnol 26:211–217

    Google Scholar 

  • Melack JM, Kilham P (1974) Photosynthetic rates of phytoplankton in East African alkaline saline lakes. Limnol Oceanogr 19:743–755

    Article  CAS  Google Scholar 

  • Millbrink G (1977) On the limnology of two alkaline lakes (Nakuru and Naivasha) in the East African rift valley system in Kenya. Int Rev Ges Hydrobiol 62:1–17

    Article  Google Scholar 

  • Mwathe K (2014) Fresh lake Natron soda ash push threatens the future of East Africa’s Flamingos. Birdlife International, Africa. http://www.birdlife.org/africa/news. Accessed 11 2015

  • Nelson YM, Thampy RJ, Motelin GK, Raini JA, DiSante CJ, Lion LW (1998) Model for trace metal exposure in filter-feeding flamingos at alkaline rift valley lakes, Kenya. Environ Toxicol Chem 17:2302–2309

    Article  CAS  Google Scholar 

  • Odada EO, Olago DO, Bugenyi F, Kulindwa K, Karimumuryango J, West K, Ntiba M, Wandiga S, Aloo-Obudho P, Achola P (2003) Environmental assessment of the East African rift valley lakes. Aquat Sci 65:254–271

    Article  Google Scholar 

  • Odada E, Raini J, Ndetei R (2006) Lake Nakuru: experiences and lessons learned brief. www.worldlakes.org/uploads/Nakuru. Accessed 10 Jan 2015

  • Oduor SO, Schagerl M (2007a) Temporal trends of ion contents and nutrients in three Kenyan rift valley saline–alkaline lakes and their influence on phytoplankton biomass. Hydrobiologia 584:59–68

    Article  CAS  Google Scholar 

  • Oduor SO, Schagerl M (2007b) Phytoplankton primary productivity characteristics in response to photosynthetically active radiation in three Kenyan rift valley saline–alkaline lakes. J Plankton Res 19:1041–1050

    Article  Google Scholar 

  • Olago D, Opere A, Barongo J (2009) Holocene palaeohydrology, groundwater and climate change in the lake basins of the Central Kenya Rift. J Hydrol Sci 54:765–780. Special issue: Groundwater and Climate in Africa

    Google Scholar 

  • Olaka LA, Odada EO, Trauth MH, Olago DO (2010) Sensitivity of East African rift lakes to climate fluctuations. J Palaeolimnol 44:629–644

    Article  Google Scholar 

  • Owino AO, Oyugi OJ, Nasirwa OO, Bennun AL (2001) Patterns of variation in Water bird numbers on four rift valley lakes in Kenya, 1991–1999. Hydrobiologia 458:45–53

    Article  Google Scholar 

  • Philip JYN, Mosha DMS (2012) Salt lakes of the African rift system: a valuable research opportunity for insight into nature’s concerted multi-electrolyte science. Tanzan J Sci 38:1–12

    Google Scholar 

  • Raini AK (2009) Impact of land use changes on water resources and biodiversity of Lake Nakuru catchment Basin, Kenya. Afr J Ecol 47:39–45

    Article  Google Scholar 

  • Richardson JL, Richardson AE (1972) History of an African rift lake and its climatic implications. Ecol Monogr 42:499–534

    Article  Google Scholar 

  • Rosendahl BR (1987) Architecture of continental rifts with special reference to East African. Annu Rev Earth Planet Sci 15:445–503

    Article  Google Scholar 

  • Schagerl M, Oduor SO (2008) Phytoplankton community relationship to environmental variables in three Kenyan rift valley saline-alkaline lakes. Mar Freshw Res 59:125–136

    Article  CAS  Google Scholar 

  • Schagerl M, Burian A, Gruber-Dorninger M, Oduor SO, Kaggwa MN (2015) Algal communities of Kenyan soda lakes with a special focus on Arthrospira fusiformis. Fottea 15:245–257

    Article  Google Scholar 

  • Schlüter T (1997) Geology of East Africa. Beiträge zur regionalen Geologie der Erde, 27. Gebrüder Bornträger, Berlin, Stuttgart

    Google Scholar 

  • Talling JF (1965) The photosynthetic activity of phytoplankton in East African lakes. Int Rev Ges Hydrobiol 50:1–32

    Article  Google Scholar 

  • Talling JF (2011) Some distinctive subject contributions from tropical Africa to fundamental science of inland waters. Inland Waters 1:61–73

    Article  Google Scholar 

  • Talling JF, Wood BR, Prosser VM, Baxter MR (1973) The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshw Biol 3:53–76

    Article  Google Scholar 

  • RAM Team (2008) Ramsar Advisory Mission No. 59: Tanzania (2008). Mission Report

    Google Scholar 

  • UNEP (2000) Global environmental outlook. Earthscan, London

    Google Scholar 

  • Vareschi E (1978) Ecology of Lake Nakuru (Kenya). I Abundance and feeding of lesser flamingo. Oecologia 32:11–35

    Article  Google Scholar 

  • Vareschi E (1982) The ecology of Lake Nakuru (Kenya). III Abiotic factors and primary production. Oecologia 55:81–101

    Article  Google Scholar 

  • Vareschi E, Vareschi A (1984) The ecology of Lake Nakuru (Kenya). IV Biomass and distribution of consumer organisms. Oecologia 61:70–82

    Article  Google Scholar 

  • Willén E (2011) Cyanotoxin production in seven Ethiopian rift valley lakes. Inland Waters 1:81–91

    Article  Google Scholar 

  • Williams WD (1967) The chemical characteristics of lentic surface waters: a review. In: Weatherley AH (ed) A review of the Australian inland waters and their fauna. Australian National University Press, Canberra, p 287

    Google Scholar 

  • Williams WD (1981) The limnology of Saline lakes of Western Victoria. Hydrobiologia 81–82:233–259

    Article  Google Scholar 

  • Williams WD (2002) Environmental threats to Salt lakes and the likely status of inland saline ecosystems in 2025. Environ Conserv 29:154–167

    Article  Google Scholar 

  • Zemedkun MT (2012) Overview of geothermal resource exploration and development in the East African rift system. Presented at short course VII on exploration for geothermal resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct 27–Nov 18 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Omondi Oduor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oduor, S.O., Kotut, K. (2016). Soda Lakes of the East African Rift System: The Past, the Present and the Future. In: Schagerl, M. (eds) Soda Lakes of East Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-28622-8_15

Download citation

Publish with us

Policies and ethics