Skip to main content

Vagal Nerve Stimulation for the Treatment of Heart Failure

  • Chapter
  • First Online:
Electroceuticals

Abstract

Despite the availability of several different therapies, heart failure remains a leading cause of death worldwide, with high mortality and morbidity rates. One prognostically important feature of heart failure, that remains unaltered by conventional therapy, is vagal withdrawal. Vagal nerve stimulation (VNS) allows the direct manipulation of vagal tone, via implantable pulse generators. Deemed both safe and tolerable for human use, pre-clinical and clinical data indicate promising improvements of left ventricular function with chronic VNS therapy. Despite several proposed mechanisms, little is understood about how the cardioprotective effect is mediated, leaving several unanswered questions for ongoing research and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics-2013 update a report from the American Heart Association. Circulation. 2013;127(1):E6–E245.

    Article  PubMed  Google Scholar 

  2. Townsend N, Williams J, Bhatnagar P, Wickramasinghe K, Rayner M. Cardiovascular disease statistics 2014. London: British Heart Foundation; 2014.

    Google Scholar 

  3. Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Welsh RC, McAlister FA. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction reply. J Am Coll Cardiol. 2009;55(1):81.

    Article  Google Scholar 

  4. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.

    Article  CAS  PubMed  Google Scholar 

  5. Francis GS, Goldsmith SR, Levine TB, Olivari MT, Cohn JN. The neurohumoral axis in congestive heart-failure. Ann Intern Med. 1984;101(3):370–7.

    Article  CAS  PubMed  Google Scholar 

  6. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart-failure. N Engl J Med. 1984;311(13):819–23.

    Article  CAS  PubMed  Google Scholar 

  7. Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart-failure. Circulation. 1981;63(3):645–51.

    Article  CAS  PubMed  Google Scholar 

  8. Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, et al. Reduced beta (1) receptor messenger-RNA abundance in the failing human heart. J Clin Invest. 1993;92(6):2737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic-receptor kinase and beta-1-adrenergic receptors in the failing human heart. Circulation. 1993;87(2):454–63.

    Article  CAS  PubMed  Google Scholar 

  10. Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med. 1971;285(16):877–83. Epub 1971/10/14

    Article  CAS  PubMed  Google Scholar 

  11. Bibevski S, Dunlap ME. Ganglionic mechanisms contribute to diminished vagal control in heart failure. Circulation. 1999;99(22):2958–63. Epub 1999/06/09

    Article  CAS  PubMed  Google Scholar 

  12. Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134(35–36):514–22.

    PubMed  Google Scholar 

  13. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. Comparison of neuroendocrine activation in patients with left-ventricular dysfunction with and without congestive-heart-failure - a substudy of the Studies of Left-Ventricular Dysfunction (Solvd). Circulation. 1990;82(5):1724–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJV, Ponikowski P, Poole-Wilson PA, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10(10):933–89.

    Article  PubMed  Google Scholar 

  15. Nichols M, Townsend N, Luengo-Fernandez R, Leal L, Gray A, Sacrborough P, Rayner M. European cardiovascular disease statistics 2012. Brussels: European Heart Network, European Society of Cardiology. Sophia Antipolis; 2012.

    Google Scholar 

  16. MacIntyre K, Capewell S, Stewart S, Chalmers JWT, Boyd J, Finlayson A, et al. Evidence of improving prognosis in heart failure - trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. Circulation. 2000;102(10):1126–31.

    Article  CAS  PubMed  Google Scholar 

  17. Cleland JGF, Daubert J, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  CAS  PubMed  Google Scholar 

  18. Binkley PF, Nunziata E, Haas GJ, Nelson SD, Cody RJ. Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive-heart-failure - demonstration in human-subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol. 1991;18(2):464–72.

    Article  CAS  PubMed  Google Scholar 

  19. Nolan J, Flapan AD, Capewell S, Macdonald TM, Neilson JMM, Ewing DJ. Decreased cardiac parasympathetic activity in chronic heart-failure and Its relation to left-ventricular function. Br Heart J. 1992;67(6):482–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Desai MY, Watanabe MA, Laddu AA, Hauptman PJ. Pharmacologic modulation of parasympathetic activity in heart failure. Heart Fail Rev. 2011;16(2):179–93.

    Article  CAS  PubMed  Google Scholar 

  21. Corning JL. Considerations on the pathology and therapeutics of epilepsy. J Nerv Ment Dis. 1883;10(2):243–8.

    Article  Google Scholar 

  22. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002;1(8):477–82. Epub 2003/07/10

    Article  PubMed  Google Scholar 

  23. Tisi G, Franzini A, Messina G, Savino M, Gambini O. Vagus nerve stimulation therapy in treatment-resistant depression: a series report. Psychiatry Clin Neurosci. 2014;68(8):606–11.

    Article  PubMed  Google Scholar 

  24. Bodenlos JS, Schneider KL, Oleski J, Gordon K, Rothschild AJ, Pagoto SL. Vagus nerve stimulation and food intake: effect of body mass index. J Diabetes Sci Technol. 2014;8(3):590–5. Epub 2014/05/31

    Article  PubMed  PubMed Central  Google Scholar 

  25. Randall WC, Ardell JL. Selective parasympathectomy of automatic and conductile tissues of the canine heart. Am J Physiol. 1985;248(1):H61–H8.

    CAS  PubMed  Google Scholar 

  26. Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20(11):808–16.

    Article  PubMed  Google Scholar 

  27. Erlanger J, Gasser HS. The action potential in fibers of slow conduction in spinal roots and somatic nerves. Am J Physiol. 1930;92(1):43–82.

    Google Scholar 

  28. Woodbury DM, Woodbury JW. Effects of vagal-stimulation on experimentally induced seizures in rats. Epilepsia. 1990;31:S7–S19.

    Article  PubMed  Google Scholar 

  29. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4.

    Article  PubMed  Google Scholar 

  30. Zhang YH, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a Canine High-Rate Pacing Model. Circ-Heart Fail. 2009;2(6):692–9.

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, et al. Long term vagal stimulation in patients with advanced heart failure first experience in man. Eur J Heart Fail. 2008;10(9):884–91.

    Article  PubMed  Google Scholar 

  32. Agnew WF, Mccreery DB. Considerations for Safety with Chronically Implanted Nerve Electrodes. Epilepsia. 1990;31:S27–32.

    Article  PubMed  Google Scholar 

  33. Sabbah HN, Wang M, Jiang A, Ruble SB, Hamann JJ. Right vagus nerve stimulation improves left ventricular function in dogs with heart failure. J Am Coll Cardiol. 2010;55(10 suppl):A16–E151.

    Google Scholar 

  34. Hamann JJ, Ruble SB, Stolen C, Wang MJ, Gupta RC, Rastogi S, et al. Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur J Heart Fail. 2013;15(12):1319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res. 1998;39(1):60–76.

    Article  CAS  PubMed  Google Scholar 

  36. Lompre AM, Mercadier JJ, Wisnewsky C, Bouveret P, Pantaloni C, Dalbis A, et al. Species-dependent and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Dev Biol. 1981;84(2):286–90.

    Article  CAS  PubMed  Google Scholar 

  37. Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response a review. J Neurosurg. 2011;115(6):1248–55.

    Article  PubMed  Google Scholar 

  38. Shuchman M. Approving the vagus-nerve stimulator for depression. N Engl J Med. 2007;356(16):1604–7.

    Article  CAS  PubMed  Google Scholar 

  39. De Ferrari GM, Crijns HJGM, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55.

    Article  CAS  PubMed  Google Scholar 

  40. Hauptman PJ, Schwartz PJ, Gold MR, Borggrefe M, Van Veldhuisen DJ, Starling RC, et al. Rationale and study design of the Increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J. 2012;163(6):954.

    Article  PubMed  Google Scholar 

  41. Dicarlo L, Libbus I, Amurthur B, Kenknight BH, Anand IS. Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. J Card Fail. 2013;19(9):655–60.

    Article  PubMed  Google Scholar 

  42. De Ferrari GM, Tuinenburg AE, Ruble S, Brugada J, Klein H, Butter C, et al. Rationale and study design of the NEuroCardiac TherApy foR Heart Failure Study: NECTAR-HF. Eur J Heart Fail. 2014;16(6):692–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the neural cardiac therapy for heart failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2014; Epub 2014/09/02

    Google Scholar 

  44. La Rovere MT, Pinna GD, Raczak G. Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol. 2008;13(2):191–207.

    Article  PubMed  Google Scholar 

  45. Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.

    Article  CAS  PubMed  Google Scholar 

  46. Casolo G, Balli E, Taddei T, Amuhasi J, Gori C. Decreased spontaneous heart-rate variability in congestive heart-failure. Am J Cardiol. 1989;64(18):1162–7.

    Article  CAS  PubMed  Google Scholar 

  47. Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events - The Framingham Heart Study. Circulation. 1996;94(11):2850–5.

    Article  CAS  PubMed  Google Scholar 

  48. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen H, et al. Prospective study of heart rate variability and mortality in chronic heart failure - results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation. 1998;98(15):1510–6.

    Article  CAS  PubMed  Google Scholar 

  49. Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014;64(6):1334–43. Epub 2014/09/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hille B. Ionic channels of excitable membranes. Sunderland: Sinauer Associates, INC; 1992.

    Google Scholar 

  51. Levy MN, Yang T, Wallick DW. Assessment of beat-by-beat control of heart-rate by the autonomic nervous-system - molecular-biology techniques are necessary, but not sufficient. J Cardiovasc Electrophysiol. 1993;4(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  52. Sabbah HN, Imai M, Zaretsky A, Rastogi S, Wang M, Jiang A, et al. Therapy with vagus nerve electrical stimulation combined with beta-blockade improves left ventricular systolic function in dogs with heart failure beyond that seen with beta-blockade alone. Eur J Heart Fail. 2007;6:114.

    Google Scholar 

  53. Bohm M, Borer J, Ford I, Gonzalez-Juanatey JR, Komajda M, Lopez-Sendon J, et al. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study. Clin Res Cardiol. 2013;102(1):11–22.

    Article  PubMed  Google Scholar 

  54. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor-necrosis-factor in severe chronic heart-failure. N Engl J Med. 1990;323(4):236–41.

    Article  CAS  PubMed  Google Scholar 

  55. TorreAmione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol. 1996;27(5):1201–6.

    Article  CAS  Google Scholar 

  56. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28(4):964–71.

    Article  CAS  PubMed  Google Scholar 

  57. Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83(3):376–82.

    Article  CAS  PubMed  Google Scholar 

  58. TorreAmione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93(4):704–11.

    Article  CAS  Google Scholar 

  59. Yndestad A, Damas JK, Oie E, Ueland T, Gullestad L, Aukrust P. Systemic inflammation in heart failure - the whys and wherefores. Heart Fail Rev. 2006;11(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  60. Tsutamoto T, Wada A, Ohnishi M, Tsutsui T, Ishii C, Ohno K, et al. Transcardiac increase in tumor necrosis factor-alpha and left ventricular end-diastolic volume in patients with dilated cardiomyopathy. Eur J Heart Fail. 2004;6(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  61. Sabbah HN, Ilsar I, Zaretsky A, Rastogi S, Wang MJ, Gupta RC. Vagus nerve stimulation in experimental heart failure. Heart Fail Rev. 2011;16(2):171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Borovikova LV, Ivanova S, Zhang MH, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.

    Article  CAS  PubMed  Google Scholar 

  63. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha 7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    Article  CAS  PubMed  Google Scholar 

  64. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Investigators A. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure - results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–40.

    Article  CAS  PubMed  Google Scholar 

  65. Mann DL, McMurray JJV, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure - results of the Randomized Etanercept Worldwide evALuation (RENEWAL). Circulation. 2004;109(13):1594–602.

    Article  CAS  PubMed  Google Scholar 

  66. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 2011;58(5):500–7.

    Article  CAS  PubMed  Google Scholar 

  67. Kjekshus J. Arrhythmias and mortality in congestive heart-failure. Am J Cardiol. 1990;65(19):I42–I8.

    Article  Google Scholar 

  68. Harris AL, Locke D. Connexins: a guide. New York: Springer Science & Buisness Media; 2008.

    Google Scholar 

  69. Jongsma HJ, Wilders R. Gap junctions in cardiovascular disease. Circ Res. 2000;86(12):1193–7.

    Article  CAS  PubMed  Google Scholar 

  70. Wang XJ, Gerdes AM. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: III. Intercalated rise remodeling. J Mol Cell Cardiol. 1999;31(2):333–43.

    Article  CAS  PubMed  Google Scholar 

  71. Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, et al. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol. 2001;33(2):359–71.

    Article  CAS  PubMed  Google Scholar 

  72. Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol-Heart Circ Physiol. 2004;287(4):H1762–H70.

    Article  CAS  PubMed  Google Scholar 

  73. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95(8):754–63.

    Article  CAS  PubMed  Google Scholar 

  74. Rastogi S, Mishra S, Ilsar I, Zaretsky A, Sabbah HN. Chronic therapy with electric vagus nerve stimulation normalizes mRNA and protein expression of connexin-40,-43 and-45 in left ventricular myocardium of dogs with heart failure. Circulation. 2007;116(16):218.

    Google Scholar 

  75. Sears CE, Ashley EA, Casadei B. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol sci. 2004;359(1446):1021–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Patten RD, DeNofrio D, El-Zaru M, Kakkar R, Saunders J, Celestin F, et al. Ventricular assist device therapy normalizes inducible nitric oxide synthase expression and reduces cardiomyocyte apoptosis in the failing human heart. J Am Coll Cardiol. 2005;45(9):1419–24.

    Article  CAS  PubMed  Google Scholar 

  77. Mungrue IN, Gros R, You XM, Pirani A, Azad A, Csont T, et al. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest. 2002;109(6):735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Damy T, Ratajczak P, Robidel E, Bendall JK, Oliviero P, Boczkowski J, et al. Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats. FASEB J. 2003;17(11):1934.

    CAS  PubMed  Google Scholar 

  79. Brack KE, Patel VH, Mantravardi R, Coote JH, Ng GA. Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation. J Physiol. 2009;587(12):3045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Balligand JL, Kobzik L, Han XQ, Kaye DM, Belhassen L, Ohara DS, et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (Type-III) nitric-oxide synthase in cardiac myocytes. J Biol Chem. 1995;270(24):14582–6.

    Article  CAS  PubMed  Google Scholar 

  81. Brahmajothi MV, Campbell DL. Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoforms in mammalian heart - implications for mechanisms governing indirect and direct nitric oxide-related effects. Circ Res. 1999;85(7):575–87.

    Article  CAS  PubMed  Google Scholar 

  82. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416(6878):337–40.

    Article  CAS  PubMed  Google Scholar 

  83. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1999;96(2):657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  CAS  PubMed  Google Scholar 

  85. Tamargo J, Caballero R, Gomez R, Delpon E. Cardiac electrophysiological effects of nitric oxide. Cardiovasc Res. 2010;87(4):593–600.

    Article  CAS  PubMed  Google Scholar 

  86. Ziolo MT. The fork in the nitric oxide road: Cyclic GMP or nitrosylation? Nitric Oxide. 2008;18(3):153–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma J. Radcliffe Bsc(Hons), PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Radcliffe, E.J., Trafford, A.W. (2017). Vagal Nerve Stimulation for the Treatment of Heart Failure. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics