Skip to main content

VNS for Treatment of Inflammatory Joint Diseases

  • Chapter
  • First Online:
Electroceuticals

Abstract

The cholinergic anti-inflammatory pathway regulates innate and adaptive immunity during normal physiological function, and activation of the pathway by electrical stimulation of the vagus nerve (VNS) can reduce pathological levels of inflammation in animal models of autoimmune disorders. A proof-of-concept human study of VNS in rheumatoid arthritis (RA) has shown that VNS can ameliorate inflammation in humans. Future clinical studies will employ a novel, application-specific investigational stimulation system. In concept, this system is capable of being evolved to function in a closed-loop manner, adjusting therapy delivery to the patient’s level of disease activity.

Conflicts Statement: P.P.T. has received consulting fees from SetPoint Medical Corporation and is currently an employee of GlaxoSmithKline, which holds an equity interest in SetPoint Medical Corporation. He is a on the Board of Directors for Galvani Biosciences, another electroceuticals firm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(9746):1094–108.

    Article  PubMed  Google Scholar 

  2. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients swith rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012;71(9):1524–9.

    Article  PubMed  Google Scholar 

  3. Bisoendial RJ, Stroes ES, Tak PP. Critical determinants of cardiovascular risk in rheumatoid arthritis. Curr Pharm Des. 2011;17(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  4. Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Fleming P, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(3):480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tak PP, Kalden JR. Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther. 2011;13 Suppl 1:S5.

    PubMed  Google Scholar 

  6. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sun J, Singh V, Kajino-Sakamoto R, Aballay A. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science. 2011;332(6030):729–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tracey KJ. Cell biology. Ancient neurons regulate immunity. Science. 2011;332(6030):673–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Maanen M, Vervoordeldonk M, Tak P. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:229–32.

    Article  CAS  PubMed  Google Scholar 

  13. Borovikova L, Ivanova S, Zhang M, Yang H, Botchkina G, Watkins L, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  CAS  PubMed  Google Scholar 

  14. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA. 2008;105(31):11008–13.

    Google Scholar 

  16. Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.

    Article  PubMed  Google Scholar 

  18. Wang H, Yu M, Ochani M, Amella C, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, et al. Alpha7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol Med. 2014;20:350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  21. Bruchfeld A, Goldstein RS, Chavan S, Patel NB, Rosas-Ballina M, Kohn N, et al. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J Intern Med. 2010;268(1):94–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Olofsson PS, Levine YA, Caravaca A, Chavan SS, Pavlov VA, Faltys M, et al. Single pulse and unidirectional activation of the cervical vagus nerve reduces TNF in endotoxemia. Bioelectronic Med. 2015;2:37–42.

    Google Scholar 

  23. van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology. 2006;130(6):1822–30.

    Article  PubMed  Google Scholar 

  24. Krzyzaniak MJ, Peterson CY, Cheadle G, Loomis W, Wolf P, Kennedy V, et al. Efferent vagal nerve stimulation attenuates acute lung injury following burn: the importance of the gut-lung axis. Surgery. 2011;150(3):379–89.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosc: basic & clinical. 2000;85(1–3):141–7.

    Article  CAS  Google Scholar 

  26. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, et al. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009;183(1):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mina-Osorio P, Rosas-Ballina M, Valdes-Ferrer SI, Al-Abed Y, Tracey KJ, Diamond B. Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol Med. 2012;18:618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and-yet-unanswered questions. Autoimmun Rev. 2015;14(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  29. Wang DW, Zhou RB, Yao YM, Zhu XM, Yin YM, Zhao GJ, et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther. 2010;335(3):553–61.

    Article  CAS  PubMed  Google Scholar 

  30. Galitovskiy V, Qian J, Chernyavsky AI, Marchenko S, Gindi V, Edwards RA, et al. Cytokine-induced alterations of alpha7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. J Immunol. 2011;187(5):2677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghia JE, Blennerhassett P, Collins SM. Vagus nerve integrity and experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(3):G560–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):G711–8.

    Article  CAS  PubMed  Google Scholar 

  33. Morishita K, Costantini TW, Eliceiri B, Bansal V, Coimbra R. Vagal nerve stimulation modulates the dendritic cell profile in posthemorrhagic shock mesenteric lymph. J Trauma Acute Care Surg. 2014;76(3):610–7.

    Google Scholar 

  34. O’Mahony C, van der Kleij H, Bienenstock J, Shanahan F, O'Mahony L. Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am J Physiol Regul Integr Comp Physiol. 2009;297(4):R1118–26.

    Article  PubMed  Google Scholar 

  35. Karimi K, Bienenstock J, Wang L, Forsythe P. The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun. 2010;24(2):316–23.

    Article  CAS  PubMed  Google Scholar 

  36. van Maanen MA, Stoof SP, van der Zanden EP, de Jonge WJ, Janssen RA, Fischer DF, et al. The alpha7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: a possible role for a key neurotransmitter in synovial inflammation. Arthritis Rheum. 2009;60(5):1272–81.

    Article  PubMed  Google Scholar 

  37. Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS. Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum. 2008;58(11):3439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One. 2014;9(8):e104530.

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Maanen M, Stoof S, Larosa G, Vervoordeldonk M, Tak P. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Ann Rheum Dis. 2010;69:1717–23.

    Article  PubMed  Google Scholar 

  40. van Maanen MA, Papke RL, Koopman FA, Koepke J, Bevaart L, Clark R, et al. Two novel alpha7 nicotinic acetylcholine receptor ligands: in vitro properties and their efficacy in collagen-induced arthritis in mice. PLoS One. 2015;10(1):e0116227.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bevaart L, Vervoordeldonk MJ, Tak PP. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 2010;62(8):2192–205.

    Article  CAS  PubMed  Google Scholar 

  42. Levine YA, Koopman F, Faltys M, Zitnik R, Tak PP. Neurostimulation of the cholinergic antiinflammatory pathway in rheumatoid arthritis and inflammatory bowel disease. Bioelectron Med. 2014;1(1):34–43.

    Google Scholar 

  43. van Maanen M, Lebre M, van der Poll T, LaRosa G, Elbaum D, Vervoordeldonk M, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60:114–22.

    Article  PubMed  Google Scholar 

  44. Zhang P, Han D, Tang T, Zhang X, Dai K. Inhibition of the development of collagen-induced arthritis in Wistar rats through vagus nerve suspension: a 3-month observation. Inflamm Res. 2008;57(7):322–8.

    Article  CAS  PubMed  Google Scholar 

  45. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci. 2016;113(29):8284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fransen J, van Riel PL. The Disease Activity Score and the EULAR response criteria. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S93–9.

    CAS  PubMed  Google Scholar 

  47. Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, et al.; American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 1995;38(6):727–735.

    Google Scholar 

  48. Beekwilder JP, Beems T. Overview of the clinical applications of vagus nerve stimulation. J Clin Neurophysiol: official publication of the American Electroencephalographic Society. 2010;27(2):130–8.

    Article  CAS  Google Scholar 

  49. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22(9):1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Agarwal G, Wilfong AA, Edmonds Jr JL. Surgical revision of vagus nerve stimulation electrodes in children. Otolaryngol Head Neck Surg. 2011;144(1):123–4.

    Article  PubMed  Google Scholar 

  51. Air EL, Ghomri YM, Tyagi R, Grande AW, Crone K, Mangano FT. Management of vagal nerve stimulator infections: do they need to be removed? J Neurosurg Pediatr. 2009;3(1):73–8.

    Article  PubMed  Google Scholar 

  52. Horowitz G, Amit M, Fried I, Neufeld MY, Sharf L, Kramer U, et al. Vagal nerve stimulation for refractory epilepsy: the surgical procedure and complications in 100 implantations by a single medical center. Eur Arch Otorhinolaryngol: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 2013;270(1):355–8.

    Google Scholar 

  53. Ng WH, Donner E, Go C, Abou-Hamden A, Rutka JT. Revision of vagal nerve stimulation (VNS) electrodes: review and report on use of ultra-sharp monopolar tip. Childs Nerv Syst. 2010;26(8):1081–4.

    Article  PubMed  Google Scholar 

  54. Gorny KR, Bernstein MA, Watson Jr RE. 3 Tesla MRI of patients with a vagus nerve stimulator: initial experience using a T/R head coil under controlled conditions. J Magn Reson Imaging. 2010;31(2):475–81.

    Article  PubMed  Google Scholar 

  55. Birmingham K, Gradinaru V, Anikeeva P, Grill WM, Pikov V, McLaughlin B, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13(6):399–400.

    Article  CAS  PubMed  Google Scholar 

  56. Strollo Jr PJ, Soose RJ, Maurer JT, de Vries N, Cornelius J, Froymovich O, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  57. Huikuri HV, Jokinen V, Syvanne M, Nieminen MS, Airaksinen KE, Ikaheimo MJ, et al. Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1999;19(8):1979–85.

    Article  CAS  PubMed  Google Scholar 

  58. Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF. Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J. 2004;25(5):363–70.

    Article  PubMed  Google Scholar 

  59. Evrengul H, Dursunoglu D, Cobankara V, Polat B, Seleci D, Kabukcu S, et al. Heart rate variability in patients with rheumatoid arthritis. Rheumatol Int. 2004;24(4):198–202.

    Article  PubMed  Google Scholar 

  60. Janse van Rensburg DC, Ker JA, Grant CC, Fletcher L. Autonomic impairment in rheumatoid arthritis. Int J Rheum Dis. 2012;15(4):419–26.

    Article  PubMed  Google Scholar 

  61. Louthrenoo W, Ruttanaumpawan P, Aramrattana A, Sukitawut W. Cardiovascular autonomic nervous system dysfunction in patients with rheumatoid arthritis and systemic lupus erythematosus. QJM. 1999;92(2):97–102.

    Article  CAS  PubMed  Google Scholar 

  62. Stojanovich L, Milovanovich B, de Luka SR, Popovich-Kuzmanovich D, Bisenich V, Djukanovich B, et al. Cardiovascular autonomic dysfunction in systemic lupus, rheumatoid arthritis, primary Sjogren syndrome and other autoimmune diseases. Lupus. 2007;16(3):181–5.

    Article  CAS  PubMed  Google Scholar 

  63. Herlitz GN, Arlow RL, Cheung NH, Coyle SM, Griffel B, Macor MA, et al. Physiologic variability at the verge of systemic inflammation: multiscale entropy of heart rate variability is affected by very low doses of endotoxin. Shock. 2015;43(2):133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Peter Tak MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Levine, Y.A., Simon, J.M., Koopman, F., Faltys, M., Zitnik, R., Tak, PP. (2017). VNS for Treatment of Inflammatory Joint Diseases. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics