Skip to main content

Functional Electrical Stimulation to Treat Foot Drop as a Result of an Upper Motor Neuron Lesion

  • Chapter
  • First Online:

Abstract

Foot drop or dropped foot is a common gait problem in many people with an upper motor neuron lesion such as people after a stroke, people with Multiple Sclerosis and children and adults with Cerebral Palsy. This chapter explains the action of Functional Electrical Stimulation (FES) to the pre-tibial muscles in order to treat foot drop and how it can be adapted to the walking pattern of the individual patients by altering the stimulation patterns. The potential benefits of using FES to treat foot drop, the outcome measures used to assess these benefits and evidence for these benefits for three different clinical populations form the main part of this chapter. Finally, future directions of research into FES are summarised.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peterson EW, Cho CC, Finlayson ML. Fear of falling and associated activity curtailment among middle aged and older adults with multiple sclerosis. Mult Scler. 2007;13(9):1168–75.

    Article  CAS  PubMed  Google Scholar 

  2. Paul L, Rafferty D, Young S, Miller L, Mattison P, McFadyen A. The effect of functional electrical stimulation on the physiological cost of gait in people with multiple sclerosis. Mult Scler. 2008;14(7):954–61.

    Article  CAS  PubMed  Google Scholar 

  3. Taylor P, Humphreys L, Swain I. The long-term cost-effectiveness of the use of functional electrical stimulation for the correction of dropped foot due to upper motor neuron lesion. J Rehabil Med. 2013;45(2):154–60.

    Article  PubMed  Google Scholar 

  4. Prosser LA, Curatalo LA, Alter KE, Damiano DL. Acceptability and potential effectiveness of a foot drop stimulator in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2012;54(11):1044–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van der Linden ML, Hazlewood ME, Hillman SJ, Robb JE. Functional electrical stimulation to the dorsiflexors and quadriceps in children with cerebral palsy. Pediatr Phys Ther. 2008;20(1):23–9.

    Article  PubMed  Google Scholar 

  6. Carmick J. Letters to the editor. Effect of functional electrical stimulation on activity in children with cerebral palsy: a systematic review. Pediatr Phys Ther. 2014;26(4):487–8.

    Google Scholar 

  7. Pool D, Blackmore AM, Bear N, Valentine J. Effects of short-term daily community walk aide use on children with unilateral spastic cerebral palsy. Pediatr Phys Ther. 2014;26(3):308–17.

    Article  PubMed  Google Scholar 

  8. Liberson WT, Holmquest HJ, Scott HJ, Dow M. Functional electrotherapy stimulation of the common peroneal nerve synchronised with the swing phase of gait of hemiplegic subjects. Arch Phys Med Rehabil. 1961;42:101–5.

    CAS  PubMed  Google Scholar 

  9. National Institute for Health and Clinical Excellence (NICE) Guideline. Functional electrical stimulation for drop foot of central neurological origin. Available at: https://www.nice.org.uk/guidance/ipg278/chapter/1-guidance. Accessed 12 Oct 2015.

  10. Dunning K, O’Dell MW, Kluding P, McBride K. Peroneal stimulation for foot drop after stroke: a systematic review. Am J Phys Med Rehabil. 2015;94(8):649–64.

    Article  PubMed  Google Scholar 

  11. Kottink AI, Oostendorp LJ, Buurke JH, Nene AV, Hermens HJ, IJzerman MJ. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs. 2004;28(6):577–86.

    Article  PubMed  Google Scholar 

  12. Robbins SM, Houghton PE, Woodbury MG, Brown JL. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: a meta-analysis. Arch Phys Med Rehabil. 2006;87(6):853–9.

    Article  PubMed  Google Scholar 

  13. Wright PA, Durham S, Ewins DJ, Swain ID. Neuromuscular electrical stimulation for children with cerebral palsy: a review. Arch Dis Child. 2012;97(4):364–71.

    Article  PubMed  Google Scholar 

  14. Chiu HC, Ada L. Effect of functional electrical stimulation on activity in children with cerebral palsy: a systematic review. Pediatr Phys Ther. 2014;26(3):283–8.

    Article  PubMed  Google Scholar 

  15. Cauraugh JH, Naik SK, Hsu WH, Coombes SA, Holt KG. Children with cerebral palsy: a systematic review and meta-analysis on gait and electrical stimulation. Clin Rehabil. 2010;24(11):963–78.

    Article  PubMed  Google Scholar 

  16. Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, Swain ID. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil. 1999;80(12):1577–83.

    Article  CAS  PubMed  Google Scholar 

  17. Everaert DG, Thompson AK, Chong SL, Stein RB. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair. 2010;24(2):168–77.

    Article  PubMed  Google Scholar 

  18. Damiano DL, Prosser LA, Curatalo LA, Alter KE. Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabil Neural Repair. 2013;27(3):200–7.

    Article  PubMed  Google Scholar 

  19. World Health Organization. International classification of functioning, disability and health (ICF). Geneva: WHO; 2001.

    Google Scholar 

  20. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26(6):982–9.

    Article  CAS  PubMed  Google Scholar 

  21. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults: meaningful change and performance. J Am Geriatr Soc. 2006;54:743–9.

    Article  PubMed  Google Scholar 

  22. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory Functional Ambulation Profile. Phys Ther. 1999;79(12):1122–33.

    CAS  PubMed  Google Scholar 

  24. Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27(1):27–36.

    CAS  PubMed  Google Scholar 

  25. Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ. Measuring the impact of MS on walking ability: the 12-Item MS Walking Scale (MSWS-12). Neurology. 2003;60(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  26. Law M, Polatajko H, Pollock N, McColl MA, Carswell A, Baptiste S. Pilot testing of the Canadian Occupational Performance Measure: clinical and measurement issues. Can J Occup Ther. 1994;61:191–7.

    Article  CAS  PubMed  Google Scholar 

  27. van der Linden ML, Hooper JE, Cowan P, Weller BB, Mercer TH. Habitual functional electrical stimulation therapy improves gait kinematics and walking performance, but not patient-reported functional outcomes, of people with multiple sclerosis who present with foot-drop. PLoS One. 2014;9(8):e103368.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sheffler LR, Taylor PN, Bailey SN, Gunzler DD, Buurke JH, IJzerman MJ, Chae J. Surface peroneal nerve stimulation in lower limb hemiparesis: effect on quantitative gait parameters. Am J Phys Med Rehabil. 2015;94(5):341–57.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Motl RW, McAuley E, Snook EM, Scott JA. Validity of physical activity measures in ambulatory individuals with multiple sclerosis. Disabil Rehabil. 2006;28(18):1151–6.

    Article  PubMed  Google Scholar 

  30. Esnouf JE, Taylor PN, Mann GE, Barrett CL. Impact on activities of daily living using a functional electrical stimulation device to improve dropped foot in people with multiple sclerosis, measured by the Canadian Occupational Performance Measure. Mult Scler. 2010;16(9):1141–7.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor P, Barrett C, Mann G, Wareham W, Swain I. A feasibility study to investigate the effect of functional electrical stimulation and physiotherapy exercise on the quality of gait of people with multiple sclerosis. Neuromodulation. 2014;17(1):75–84.

    Article  PubMed  Google Scholar 

  32. Ware JE, Kosinski M, Dewey JE. How to score Version 2 of the SF-36® Health Survey Lincoln: Quality Metric Incorporated; 2001.

    Google Scholar 

  33. Brazier J, Jones N, Kind P. Testing the validity of the Euroqol and comparing it with the SF-36 health survey questionnaire. Qual Life Res. 1993;2(3):169–80.

    Article  CAS  PubMed  Google Scholar 

  34. Hobart J, Lamping D, Fitzpatrick R, Riazi A, Thompson A. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure. Brain. 2000;124:962–73.

    Article  Google Scholar 

  35. Lin KC, Fu T, Wu CY, Hdieh YW, Chen CL, Lee PC. Psychometric comparisons of the Stroke Impact Scale 3.0 and Stroke-Specific Quality of Life Scale. Qual Life Res. 2010;19(3):435–43.

    Article  PubMed  Google Scholar 

  36. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.

    Article  PubMed  Google Scholar 

  37. Wade DT, Wood VA, Heller A, Maggs J, Langton HR. Walking after stroke: measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19:25–30.

    CAS  PubMed  Google Scholar 

  38. Skilbeck CE, Wade DT, Langton HR, Wood VA. Recovery after stroke. J Neurol Neurosurg Psychiatry. 1983;46:5–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kesar TM, Perumal R, Jancosko A, Reisman DS, Rudolph KS, Higginson JS, Binder-Macleod SA. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;1:55–66.

    Article  Google Scholar 

  40. Lee YH, Yong SY, Kim SH, Kim JH, Shinn JM, Kim Y, Kim S, Hwang S. Functional electrical stimulation to ankle dorsiflexor and plantarflexor using single foot switch in patients with hemiplegia from hemorrhagic stroke. Ann Rehabil Med. 2014;38(3):310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  42. Laufer Y, Hausdorff JM, Ring H. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity. Am J Phys Med Rehabil. 2009;88(1):14–20.

    Article  PubMed  Google Scholar 

  43. Everaert DG, Stein RB, Abrams GM, Dromerick AW, Francisco GE, Hafner BJ, Huskey TN, Munin MC, Nolan KJ, Kufta CV. Effect of a foot-drop stimulator and ankle-foot orthosis on walking performance after stroke: a multicenter randomized controlled trial. Neurorehabil Neural Repair. 2013;27(7):579–91.

    Article  PubMed  Google Scholar 

  44. Kluding PM, Dunning K, O'Dell MW, Wu SS, Ginosian J, Feld J, McBride K. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke. 2013;44(6):1660–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sheffler LR, Taylor PN, Gunzler DD, Buurke JH, Ijzerman MJ, Chae J. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis. Arch Phys Med Rehabil. 2013;94(6):1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sabut SK, Sikdar C, Kumar R, Mahadevappa M. Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation. 2011;29(4):393–400.

    PubMed  Google Scholar 

  47. Kottink AI, Ijzerman MJ, Groothuis-Oudshoorn CG, Hermens HJ. Measuring quality of life in stroke subjects receiving an implanted neural prosthesis for drop foot. Artif Organs. 2010;34(5):366–76.

    Article  PubMed  Google Scholar 

  48. Bethoux F, Rogers HL, Nolan KJ, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2014;28(7):688–97.

    Article  PubMed  Google Scholar 

  49. Bethoux F, Rogers HL, Nolan KJ, et al. Long-term follow-up to a randomized controlled trial comparing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. Neurorehabil Neural Repair. 2015;29:911–922. pii: 1545968315570325.

    Google Scholar 

  50. van Swigchem R, van Duijnhoven HJ, den Boer J, Geurts AC, Weerdesteyn V. Effect of peroneal electrical stimulation versus an ankle-foot orthosis on obstacle avoidance ability in people with stroke-related foot drop. Phys Ther. 2012;92(3):398–406.

    Article  PubMed  Google Scholar 

  51. Winter DA. Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther. 1992;72:45–66.

    CAS  PubMed  Google Scholar 

  52. O'Dell MW, Dunning K, Kluding P, Wu SS, Feld J, Ginosian J, McBride K. Response and prediction of improvement in gait speed from functional electrical stimulation in persons with poststroke drop foot. PM R. 2014;6(7):587–601.

    Article  PubMed  Google Scholar 

  53. Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci. 1999;354(1390):1649–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Larocca NG. Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient. 2011;4:189–201.

    Article  PubMed  Google Scholar 

  55. Scott SM, van der Linden ML, Hooper JE, Cowan P, Mercer TH. Quantification of gait kinematics and walking ability of people with multiple sclerosis who are new users of functional electrical stimulation. J Rehabil Med. 2013;45(4):364–9.

    Article  PubMed  Google Scholar 

  56. Stein RB, Everaert DG, Thompson AK, Su LC, Whittaker M, Robertson J, et al. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24:152–67.

    Article  PubMed  Google Scholar 

  57. Miller L, Rafferty D, Paul L, Mattison P. The impact of walking speed on the effects of functional electrical stimulation for foot drop in people with multiple sclerosis. Disabil Rehabil Assist Technol. 2015;31:1–6.

    Article  Google Scholar 

  58. Street T, Taylor P, Swain I. Effectiveness of functional electrical stimulation on walking speed, functional walking category, and clinically meaningful changes for people with multiple sclerosis. Arch Phys Med Rehabil. 2015;96(4):667–72.

    Article  PubMed  Google Scholar 

  59. Downing A, Van Ryn D, Fecko A, Aiken C, McGowan S, Sawers S, McInerny T, Moore K, Passariello L, Rogers H. Effect of a 2-week trial of functional electrical stimulation on gait function and quality of life in people with multiple sclerosis. Int J MS Care. 2014;16(3):146–52.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Barrett CL, Mann GE, Taylor PN, Strike P. A randomized trial to investigate the effects of functional electrical stimulation and therapeutic exercise on walking performance for people with multiple sclerosis. Mult Scler. 2009;15(4):493–504.

    Article  CAS  PubMed  Google Scholar 

  61. Miller L, Rafferty D, Paul L, Mattison P. A comparison of the orthotic effect of the Odstock Dropped Foot Stimulator and the Walkaide functional electrical stimulation systems on energy cost and speed of walking in Multiple Sclerosis. Disabil Rehabil Assist Technol. 2014;10(6):482–5.

    Article  Google Scholar 

  62. Sheffler LR, Bailey SN, Chae J. Spatiotemporal and kinematic effect of peroneal nerve stimulation versus an ankle-foot orthosis in patients with multiple sclerosis: a case series. PM R. 2009;1(7):604–11.

    Article  PubMed  Google Scholar 

  63. Bulley C, Mercer TH, Hooper JE, Cowan P, Scott S, van der Linden ML. Experiences of functional electrical stimulation (FES) and ankle foot orthoses (AFOs) for foot-drop in people with multiple sclerosis. Disabil Rehabil Assist Technol. 2015;10(6):458–67.

    Article  Google Scholar 

  64. Surveillance of Cerebral Palsy in Europe (SCPE). Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002;44:633–40.

    Google Scholar 

  65. Surman G, Bonellie S, Chalmers I, Colver A, Dolk H, Hemming K, King A, Kurinczuk I, Parkes I, Platt MJ. UKCP: a collaborative network of cerebral palsy registers in the United Kingdom. J Public Health (Oxf). 2006;28(2):148–56.

    Article  Google Scholar 

  66. Wiley ME, Damiano DL. Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol. 1998;40:100–7.

    Article  CAS  PubMed  Google Scholar 

  67. Fowler EG, Staudt LA, Greenberg MB. Lower-extremity selective voluntary motor control in patients with spastic cerebral palsy: increased distal motor impairment. Dev Med Child Neurol. 2010;52:264–9.

    Article  PubMed  Google Scholar 

  68. Carmick J. Managing equinus in children with cerebral palsy: electrical stimulation to strengthen the triceps surae muscle. Dev Med Child Neurol. 1995;37(11):965–75.

    Article  CAS  PubMed  Google Scholar 

  69. Carmick J. Clinical use of neuromuscular electrical stimulation for children with cerebral palsy, part 1: lower extremity. Phys Ther. 1993;73(8):505–13.

    CAS  PubMed  Google Scholar 

  70. Brown JK, Rodda J, Walsh EG, Wright GW. Neurophysiology of lower-limb function in hemiplegic children. Dev Med Child Neurol. 1991;33(12):1037.

    Article  CAS  PubMed  Google Scholar 

  71. Comeaux P, Patterson N, Rubin M, Meiner R. Effect of neuromuscular electrical stimulation during gait in children with cerebral palsy. Pediatr Phys Ther. 1997;9:103–9.

    Article  Google Scholar 

  72. Postans NJ, Granat MH. Effect of functional electrical stimulation, applied during walking, on gait in spastic cerebral palsy. Dev Med Child Neurol. 2005;47:46–52.

    Article  PubMed  Google Scholar 

  73. Orlin MN, Pierce SR, Stackhouse CL, Smith BT, Johnston T, Shewokis PA, McCarthy JJ. Immediate effect of percutaneous intramuscular stimulation during gait in children with cerebral palsy: a feasibility study. Dev Med Child Neurol. 2005;47(10):684–90.

    Article  PubMed  Google Scholar 

  74. Taylor PN, Burridge JH, Dunkerley AL, Lamb A, Wood DE, Norton JA, Swain ID. Patients’ perceptions of the Odstock Dropped Foot Stimulator (ODFS). Clin Rehabil. 1999;13(5):439–46.

    Article  CAS  PubMed  Google Scholar 

  75. Dalton H, Taylor P, New letter Winter 2011 http://www.odstockmedical.com/sites/default/files/skin_irritation_audit.pdf. Accessed 17 Oct 2015.

  76. Van der Linden ML, Hooper JE, Mercer TM. Functional electrical stimulation to treat foot drop for people with MS; user perceptions of benefits, disadvantages and service provision in Edinburgh. In: Proceedings of rehabilitation in MS (RIMS) meeting, 6–7 June 2014; Brighton.

    Google Scholar 

  77. Bulley C, Shiels J, Wilkie K, Salisbury L. User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy. 2011;97(3):226–33.

    Article  PubMed  Google Scholar 

  78. Economic Report. Functional electrical stimulation for dropped foot of central neurological origin [Internet]. NHS Purchasing and Supply Agency. 2010. CEP10012. Available from: http://www.cedar.wales.nhs.uk/sitesplus/documents/1091/CEP10012%20FES%20econ%20report.pdf. Accessed 19 July 2016.

  79. Ernst J, Grundey J, Hewitt M, von Lewinski F, Kaus J, Schmalz T, Rohde V, Liebetanz D. Towards physiological ankle movements with the ActiGait implantable drop foot stimulator in chronic stroke. Restor Neurol Neurosci. 2013;31(5):557–69.

    PubMed  Google Scholar 

  80. Kottink A, Hermens HJ, Nene AV, Tenniglo MJ, van der Aa HE, Buschman HP, Ijzerman MJ. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabil. 2007;88(8):971–8.

    Article  PubMed  Google Scholar 

  81. Schiemanck S, Berenpas F, van Swigchem R, van den Munckhof P, de Vries J, Beelen A, Nollet F, Geurts AC. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Restor Neurol Neurosci. 2015;33(6):795–807.

    Article  PubMed  Google Scholar 

  82. Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, Reeves ML, van der Meulen JM, Barker AT. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013;35(1):74–81.

    Article  PubMed  Google Scholar 

  83. O'Halloran T, Haugland M, Lyons GM, Sinkjaer T. An investigation of the effect of modifying stimulation profile shape on the loading response phase of gait, during FES-corrected drop foot: stimulation profile and loading response. Neuromodulation. 2004;7(2):113–25.

    Article  PubMed  Google Scholar 

  84. Melo PL, Silva MT, Martins JM, Newman DJ. Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech. 2015;30(2):101–13.

    Article  CAS  Google Scholar 

  85. Johnson CA, Burridge JH, Strike PW, Wood DE, Swain ID. The effect of combined use of botulinum toxin type A and functional electric stimulation in the treatment of spastic drop foot after stroke: a preliminary investigation. Arch Phys Med Rehabil. 2004;85(6):902–9.

    Article  PubMed  Google Scholar 

  86. Ng MF, Tong RK, Li LS. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up. Stroke. 2008;39(1):154–60.

    Article  PubMed  Google Scholar 

  87. Johnston TE, Finson RL, McCarthy JJ, Smith BT, Betz RR, Mucahey MJ. The use functional electrical stimulation to augment traditional orthopaedic surgery in children with cerebral palsy. J Pediatr Orthop. 2004;24:283–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marietta L. van der Linden PhD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

van der Linden, M.L., Mercer, T.H. (2017). Functional Electrical Stimulation to Treat Foot Drop as a Result of an Upper Motor Neuron Lesion. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics