Skip to main content

Normal and Impaired Cooperative Hand Movements: Role of Neural Coupling

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Recent research indicates that a task-specific, interhemispheric neural coupling is involved in the control of cooperative hand movements required for activities of daily living. This neural coupling is manifested in bilateral electromyographic reflex responses in the arm muscles to unilateral arm nerve stimulation. In addition, fMRI recordings show a bilateral task-specific activation and functional coupling of the secondary somatosensory cortical areas (S2) during the cooperative, but not during bimanual control tasks. This activation is suggested to reflect processing of shared cutaneous input during the cooperative task in both cortical areas. In chronic poststroke patients, arm nerve stimulation of the unaffected arm also leads to bilateral electromyographic responses, similar to those seen in healthy subjects in the cooperative task. However, stimulation of the affected side is frequently followed only by ipsilateral responses. The presence/absence of contralateral electromyographic responses correlates with the clinical motor impairment measured by the Fugl-Meyer score. The observations suggest impaired processing of afferent input from the affected side leading to defective neural coupling during cooperative hand movements after stroke. In moderately affected patients, movement execution seems to rely on the involvement of the ipsilateral corticospinal tract arising in the non-damaged hemisphere. According to these results, hand rehabilitation of stroke patients, currently focused on reach and grasp movements of the affected side, should be supplemented with the training of cooperative hand movements required during activities of daily living.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenny AB. Commissural projections of the cortical hand motor area in monkeys. J Comp Neurol. 1979;188(1):137–45.

    Article  CAS  PubMed  Google Scholar 

  2. Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, et al. Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res. 1994;102(2):227–43.

    Article  CAS  PubMed  Google Scholar 

  3. Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E. Primary motor cortex is involved in bimanual coordination. Nature. 1998;395(6699):274–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kermadi I, Liu Y, Tempini A, Calciati E, Rouiller EM. Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination. Somatosens Mot Res. 1998;15(4):287–308.

    Article  CAS  PubMed  Google Scholar 

  5. Tanji J, Okano K, Sato KC. Relation of neurons in the nonprimary motor cortex to bilateral hand movement. Nature. 1987;327(6123):618–20.

    Article  CAS  PubMed  Google Scholar 

  6. Theorin A, Johansson RS. Selection of prime actor in humans during bimanual object manipulation. J Neurosci. 2010;30(31):10448–59.

    Article  CAS  PubMed  Google Scholar 

  7. Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, et al. Brain areas involved in interlimb coordination: a distributed network. Neuroimage. 2001;14:947–58.

    Article  CAS  PubMed  Google Scholar 

  8. Kazennikov O, Hyland B, Corboz M, Babalian A, Rouiller EM, et al. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences. Neuroscience. 1999;89:661–74.

    Article  CAS  PubMed  Google Scholar 

  9. Kermadi I, Liu Y, Rouiller EM. Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas. Somatosens Mot Res. 2000;17(3):255–71.

    Article  CAS  PubMed  Google Scholar 

  10. Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, et al. The role of ventral medial wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain. 1999;122(Pt 2):351–68.

    Article  PubMed  Google Scholar 

  11. Swinnen SP. Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci. 2002;3:348–59.

    Article  PubMed  Google Scholar 

  12. Wiesendanger M, Serrien DJ. The quest to understand bimanual coordination. Prog Brain Res. 2004;143:491–505.

    Article  PubMed  Google Scholar 

  13. Liuzzi G, Horniss V, Zimerman M, Gerloff C, Hummel FC. Coordination of uncoupled bimanual movements by strictly timed interhemispheric connectivity. J Neurosci. 2011;31(25):9111–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ohki Y, Johansson RS. Sensorimotor interactions between pairs of fingers in bimanual and unimanual manipulative tasks. Exp Brain Res. 1999;127(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  15. White O, Dowling N, Bracewell RM, Diedrichsen J. Hand interactions in rapid grip force adjustments are independent of object dynamics. J Neurophysiol. 2008;100:2738–45.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lum PS, Reinkensmeyer DJ, Lehman SL. A Bimanual reflex during two hand grasp. Conference proceedings IEEE, Med Biol Soc, San Diego, 1993. p. 1163–4.

    Google Scholar 

  17. Obhi SS. Bimanual coordination: an unbalanced field of research. Motor Control. 2004;8(2):111–20.

    PubMed  Google Scholar 

  18. Dietz V, Macauda G, Schrafl-Altermatt M, Wirz M, Kloter E, et al. Neural coupling of cooperative hand movements: a reflex and FMRI study. Cereb Cortex. 2015;25(4):948–58.

    Article  PubMed  Google Scholar 

  19. Datta AK, Harrison LM, Stephens JA. Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle. J Physiol. 1989;418:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zehr EP, Kido A. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes. J Physiol. 2001;537(Pt 3):1033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michel J, van Hedel HJ, Dietz V. Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination. Eur J Neurosci. 2008;27(7):1867–75.

    Article  CAS  PubMed  Google Scholar 

  22. Dietz V, Fouad K, Bastiaanse CM. Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci. 2001;14(11):1906–14.

    Article  CAS  PubMed  Google Scholar 

  23. Disbrow E, Roberts T, Poeppel D, Krubitzer L. Evidence for interhemispheric processing of inputs from the hands in human S2 and PV. J Neurophysiol. 2001;85(5):2236–44.

    CAS  PubMed  Google Scholar 

  24. Whitsel BL, Petrucelli LM, Werner G. Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. J Neurophysiol. 1969;32(2):170–83.

    CAS  PubMed  Google Scholar 

  25. Lin YY, Forss N. Functional characterization of human second somatosensory cortex by magnetoencephalography. Behav Brain Res. 2002;135(1–2):141–5.

    Article  CAS  PubMed  Google Scholar 

  26. Hari R, Hanninen R, Makinen T, Jousmaki V, Forss N, et al. Three hands: fragmentation of human bodily awareness. Neurosci Lett. 1998;240(3):131–4.

    Article  CAS  PubMed  Google Scholar 

  27. Schrafl-Altermatt M, Dietz V. Task-specific role of ipsilateral pathways: somatosensory evoked potentials during cooperative hand movements. Neuroreport. 2014;25(18):1429–32.

    Article  PubMed  Google Scholar 

  28. Massion J, Ioffe M, Schmitz C, Viallet F, Gantcheva R. Acquisition of anticipatory postural adjustments in a bimanual load-lifting task: normal and pathological aspects. Exp Brain Res. 1999;128(1–2):229–35.

    Article  CAS  PubMed  Google Scholar 

  29. Torre K, Hammami N, Metrot J, van Dokkum L, Coroian F, et al. Somatosensory-related limitations for bimanual coordination after stroke. Neurorehabil Neural Repair. 2013;27(6):507–15.

    Article  PubMed  Google Scholar 

  30. Schrafl-Altermatt M, Dietz V. Cooperative hand movements in stroke patients: neural reorganization. Under revision. 2016.

    Google Scholar 

  31. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195–218.

    Article  CAS  PubMed  Google Scholar 

  32. Kloter E, Wirz M, Dietz V. Locomotion in stroke subjects: interactions between unaffected and affected sides. Brain. 2011;134(Pt 3):721–31.

    Article  PubMed  Google Scholar 

  33. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–67.

    Article  CAS  PubMed  Google Scholar 

  34. Bradnam LV, Stinear CM, Byblow WD. Theta burst stimulation of human primary motor cortex degrades selective muscle activation in the ipsilateral arm. J Neurophysiol. 2010;104(5):2594–602.

    Article  PubMed  Google Scholar 

  35. Howatson G, Taylor MB, Rider P, Motawar BR, McNally MP, et al. Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. Eur J Neurosci. 2011;33(5):978–90.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol. 2011;589(Pt 23):5603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edwards JD, Meehan SK, Linsdell MA, Borich MR, Anbarani K, et al. Changes in thresholds for intracortical excitability in chronic stroke: more than just altered intracortical inhibition. Restor Neurol Neurosci. 2013;31:693.

    PubMed  Google Scholar 

  38. Teasell R, Bayona NA, Bitensky J. Plasticity and reorganization of the brain post stroke. Top Stroke Rehabil. 2005;12(3):11–26.

    Article  PubMed  Google Scholar 

  39. Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain. 2007;130(Pt 8):2146–58.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taub E, Uswatte G, Mark VW, Morris DM. The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys. 2006;42:241–56.

    CAS  PubMed  Google Scholar 

  41. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J Rehabil Res Dev. 1999;36(3):237–51.

    CAS  PubMed  Google Scholar 

  42. Stoykov ME, Lewis GN, Corcos DM. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil Neural Repair. 2009;23:945–53.

    Article  PubMed  Google Scholar 

  43. van Delden AL, Peper CL, Beek PJ, Kwakkel G. Match and mismatch between objective and subjective improvements in upper limb function after stroke. Disabil Rehabil. 2013;35(23):1961–7.

    Article  PubMed  Google Scholar 

  44. Lin KC, Chen YA, Chen CL, Wu CY, Chang YF. The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabil Neural Repair. 2010;24(1):42–51.

    Article  PubMed  Google Scholar 

  45. Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil. 2000;22(1–2):23–37.

    Article  CAS  PubMed  Google Scholar 

  46. Jung R, Dietz V. Delayed initiation of voluntary movements after pyramidal lesions in man (author’s transl). Arch Psychiatr Nervenkr. 1975 Dec 31;221(2):87–109.

    Google Scholar 

  47. Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116(Pt 5):1223–47.

    Article  PubMed  Google Scholar 

  48. Mayston MJ, Harrison LM, Stephens JA. A neurophysiological study of mirror movements in adults and children. Ann Neurol. 1999;45(5):583–94.

    Article  CAS  PubMed  Google Scholar 

  49. Buma F, Kwakkel G, Ramsey N. Understanding upper limb recovery after stroke. Restor Neurol Neurosci. 2013;31(6):707–22.

    PubMed  Google Scholar 

  50. Schrafl-Altermatt M, Dietz V. Effect of cooperative hand movement training in post-stroke subjects: a single case study. Under review. 2016.

    Google Scholar 

  51. Sleimen-Malkoun R, Temprado JJ, Berton E. A dynamic systems approach to bimanual coordination in stroke: implications for rehabilitation and research. Medicina. 2010;46(6):374–81.

    PubMed  Google Scholar 

  52. Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, et al. Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med. 2014;57(8):543–51.

    Article  CAS  PubMed  Google Scholar 

  53. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952–9.

    Article  PubMed  Google Scholar 

  54. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    Article  PubMed  Google Scholar 

  55. Sale P, Lombardi V, Franceschini M. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res Treat. 2012;2012:820931.

    PubMed  PubMed Central  Google Scholar 

  56. Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, et al. A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput. 2011;49(10):1213–23.

    Article  PubMed  Google Scholar 

  57. Ang KK, Chua KS, Phua KS, Wang C, Chin ZY, et al. A Randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2015;46(4):310–20.

    Google Scholar 

  58. Formaggio E, Storti SF, Boscolo Galazzo I, Gandolfi M, Geroin C, et al. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. J Neuroeng Rehabil. 2013;10:24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2):186–94.

    Article  PubMed  Google Scholar 

  60. Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014;11:111.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Schrafl-Altermatt PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Schrafl-Altermatt, M., Dietz, V. (2016). Normal and Impaired Cooperative Hand Movements: Role of Neural Coupling. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics