Skip to main content

Functional Electrical Stimulation Therapy: Recovery of Function Following Spinal Cord Injury and Stroke

  • Chapter
  • First Online:

Abstract

Electrical stimulation is a tool that applies low-energy electrical pulses to artificially generate muscle contractions. If electrical stimulation is used to enable functional movements, such as walking and grasping, then this intervention is called functional electrical stimulation (FES). When FES is used as a therapy instead of being used as an orthosis, it is called FES therapy or FET. In this chapter, we introduce recent findings and advances in the field of FET. The findings to date clearly show that FET for reaching and grasping is a therapeutic modality that should be implemented in every rehabilitation institution that is treating patients with stroke and SCI. There is also considerable evidence to support the use of FET as a therapeutic modality to treat drop-foot problem in both stroke and incomplete spinal cord injury (SCI) populations. Although phase I randomized control trials have been completed with chronic SCI population using this new FET technology and preliminary findings are encouraging, further R&D is required before the multichannel FET for walking will be ready for prime time clinical implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reichel M, Breyer T, Mayr W, Rattay F. Simulation of the three-dimensional electrical field in the course of functional electrical stimulation. Artif Organs. 2002;26:252–5.

    Article  PubMed  Google Scholar 

  2. Kern H, Hofer C, Mödlin M, Forstner C, Raschka-Högler D, Mayr W, Stöhr H. Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artif Organs. 2002;26:216–8.

    Article  PubMed  Google Scholar 

  3. Rushton D. Functional electrical stimulation and rehabilitation—an hypothesis. Med Eng Phys. 2003;25:75–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn A, Keller T, Micera S, Morari M. Array electrode design for transcutaneous electrical stimulation: a simulation study. Med Eng Phys. 2009;31:945–51.

    Article  PubMed  Google Scholar 

  5. Micera S, Keller T, Lawrence M, Morari M, Popović DB. Wearable neural prostheses. Restoration of sensory-motor function by transcutaneous electrical stimulation. IEEE Eng Med Biol Mag. 2010;29:64–9.

    Article  PubMed  Google Scholar 

  6. Popović DB, Popović MB. Automatic determination of the optimal shape of a surface electrode: selective stimulation. J Neurosci Methods. 2009;178:174–81.

    Article  PubMed  Google Scholar 

  7. Smith B, Tang Z, Johnson MW, Pourmehdi S, Gazdik MM, Buckett JR, Peckham PH. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng. 1998;45:463–75.

    Article  CAS  PubMed  Google Scholar 

  8. Popovic MB, Popovic DB, Sinkjaer T, Stefanovic A, Schwirtlich L. Restitution of reaching and grasping promoted by functional electrical therapy. Artif Organs. 2002;26:271–5.

    Article  PubMed  Google Scholar 

  9. Davis R, Sparrow O, Cosendai G, Burridge JH, Turk R, Wulff C, Schulman J. Post-stroke arm rehabilitation using 5–7 implanted microstimulators: implantation procedures, safety and efficacy. 12th Ann Conf Int FES Soc, Nov 2007, Philadelphia.

    Google Scholar 

  10. Waters RL. The enigma of “carry-over”. Int Rehabil Med. 1984;6:9–12.

    Article  CAS  PubMed  Google Scholar 

  11. Merletti R, Acimovic R, Grobelnik S, Cvilak G. Electrophysiological orthosis for the upper extremity in hemiplegia: feasibility study. Arch Phys Med Rehabil. 1975;56:507–13.

    CAS  PubMed  Google Scholar 

  12. Popovic MR, Popovic DB, Keller T. Neuroprostheses for grasping. Neurol Res. 2002;24:443–52.

    Article  PubMed  Google Scholar 

  13. Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, Swain ID. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil. 1999;80:1577–83.

    Article  CAS  PubMed  Google Scholar 

  14. Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24:152–67.

    Article  PubMed  Google Scholar 

  15. Hausdorff JM, Ring H. Effects of a new radio frequency-controlled neuroprosthesis on gait symmetry and rhythmicity in patients with chronic hemiparesis. Am J Phys Med Rehabil. 2008;87:4–13.

    Article  PubMed  Google Scholar 

  16. Burridge JH, Haugland M, Larsen B, Svaneborg N, Iversen HK, Christensen PB, Pickering RM, Sinkjaer T. Patients’ perceptions of the benefits and problems of using the ActiGait implanted drop-foot stimulator. J Rehabil Med. 2008;40:873–5.

    Article  PubMed  Google Scholar 

  17. Kenney L, Bultstra G, Buschman R, Taylor P, Mann G, Hermens H, Holsheimer J, Nene A, Tenniglo M, van der Aa H, Hobby J. An implantable two channel drop foot stimulator: initial clinical results. Artif Organs. 2002;26:267–70.

    Article  PubMed  Google Scholar 

  18. van Swigchem R, Vloothuis J, den Boer J, Weerdesteyn V, Geurts ACH. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients’ satisfaction, walking speed and physical activity level. J Rehabil Med. 2010;42:117–21.

    Article  PubMed  Google Scholar 

  19. Daly JJ, Roenigk K, Holcomb J, Rogers JM, Butler K, Gansen J, McCabe J, Fredrickson E, Marsolais EB, Ruff RL. A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 2006;37:172–8.

    Article  PubMed  Google Scholar 

  20. Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11:201–10.

    Article  CAS  PubMed  Google Scholar 

  21. Granat MH, Maxwell DJ, Ferguson AC, Lees KR, Barbenel JC. Peroneal stimulator; evaluation for the correction of spastic drop foot in hemiplegia. Arch Phys Med Rehabil. 1996;77:19–24.

    Article  CAS  PubMed  Google Scholar 

  22. Kantrowitz A. Electronic physiological aids: A report of the Maimonides Hospital. Maimonides Hospital, Brooklyn. 1960.

    Google Scholar 

  23. Strojnik P, Kralj A, Ursic I. Programmed six-channel electrical stimulator for complex stimulation of leg muscles during walking. IEEE Trans Biomed Eng. 1979;26:112–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kralj A, Bajd T, Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop Relat Res. 1988;233:34–43.

    PubMed  Google Scholar 

  25. Graupe D, Davis R, Kordylewski H, Kohn K. Ambulation by traumatic T4–12 paraplegics using functional neuromuscular stimulation. Crit Rev Neurosurg. 1998;8:221–31.

    Article  PubMed  Google Scholar 

  26. Graupe D, Kohn KH. Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg Neurol. 1998;50:202–7.

    Article  CAS  PubMed  Google Scholar 

  27. Popovic D, Tomović R, Schwirtlich L. Hybrid assistive system—the motor neuroprosthesis. IEEE Trans Biomed Eng. 1989;36:729–37.

    Article  CAS  PubMed  Google Scholar 

  28. Solomonow M, Baratta R, Hirokawa S, Rightor N, Walker W, Beaudette P, Shoji H, D’Ambrosia R. The RGO generation II: muscle stimulation powered orthosis as a practical walking system for thoracic paraplegics. Orthopedics. 1989;12:1309–15.

    CAS  PubMed  Google Scholar 

  29. Bailey SN, Hardin EC, Kobetic R, Boggs LM, Pinault G, Triolo RJ. Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury. J Rehabil Res Dev. 2010;47:7–16.

    Article  PubMed  Google Scholar 

  30. Davis JA, Triolo RJ, Uhlir J, Bieri C, Rohde L, Lissy D, Kukke S. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers—where do we stand? J Rehabil Res Dev. 2001;38:609–17.

    PubMed  Google Scholar 

  31. Davis JA, Triolo RJ, Uhlir JP, Bhadra N, Lissy DA, Nandurkar S, Marsolais EB. Surgical technique for installing an eight-channel neuroprosthesis for standing. Clin Orthop Relat Res. 2001;385:237–52.

    Article  PubMed  Google Scholar 

  32. Hardin E, Kobetic R, Murray L, Corado-Ahmed M, Pinault G, Sakai J, Bailey SN, Ho C, Triolo RJ. Walking after incomplete spinal cord injury using an implanted FES system: a case report. J Rehabil Res Dev. 2007;44:333–46.

    Article  PubMed  Google Scholar 

  33. Johnston TE, Betz RR, Smith BT, Benda BJ, Mulcahey MJ, Davis R, Houdayer TP, Pontari MA, Barriskill A, Creasey GH. Implantable FES system for upright mobility and bladder and bowel function for individuals with spinal cord injury. Spinal Cord. 2005;43:713–23.

    Article  CAS  PubMed  Google Scholar 

  34. Popovic MR, Keller T. Modular transcutaneous functional electrical stimulation system. Med Eng Phys. 2005;27:81–92.

    Article  PubMed  Google Scholar 

  35. Thrasher TA, Flett HM, Popovic MR. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord. 2006;44:357–61.

    Article  CAS  PubMed  Google Scholar 

  36. Pappas IP, Popovic MR, Keller T, Dietz V, Morari M. A reliable gait phase detection system. IEEE Trans Neural Sys Rehabil Eng. 2001;9:113–25.

    Article  CAS  Google Scholar 

  37. Bajd T, Kralj A, Stefancic M, Lavrac N. Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients. Artif Organs. 1999;23:403–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wieler M, Stein R, Ladouceur M, Whittaker M, Smith A, Naaman S, Barbeau H, Bugaresti J, Aimone E. Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil. 1999;80:495–500.

    Article  CAS  PubMed  Google Scholar 

  39. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91(1):48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005;29(3):127–37.

    Article  PubMed  Google Scholar 

  41. Giangregorio L, Craven BC, Richards K, Kapadia N, Hitzig SL, Masani K, Popovic MR. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med. 2012;35(5):351–60.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hitzig SL, Craven BC, Panjwani A, Kapadia N, Giangregorio LM, Richards K, Masani K, Popovic MR. A randomized trial of functional electrical stimulation therapy for walking in incomplete spinal cord injury: effects on quality of life and community participation. Top Spinal Cord Inj Rehabil. 2013;19(4):245–58.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kapadia N, Masani K, Craven BC, Giangregorio LM, Hitzig SL, Richards K, Popovic MR. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. J Spinal Cord Med. 2014;37(5):511–24.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A. Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke. 1998;29:975–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chae J, Harley M, Hisel T, Corrigan C, Demchak J, Wong Y-T, Fang Z-P. Intramuscular electrical stimulation for upper limb recovery in chronic hemiparesis: an exploratory randomized clinical trial. Neurorehabil Neural Repair. 2009;23:569–78.

    Article  PubMed  Google Scholar 

  46. Chae J, Hart R. Intramuscular hand neuroprosthesis for chronic stroke survivors. Neurorehabil Neural Repair. 2003;17:109–17.

    Article  PubMed  Google Scholar 

  47. Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, Pang S. Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil. 1998;79:570–5.

    Article  CAS  PubMed  Google Scholar 

  48. Hendricks HT, IJzerman MJ, de Kroon JR, in’t Groen FA, Zilvold G. Functional electrical stimulation by means of the ‘Ness Handmaster Orthosis’ in chronic stroke patients: an exploratory study. Clin Rehabil. 2001;15:217–20.

    Article  CAS  PubMed  Google Scholar 

  49. Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil. 2007;88:833–9.

    Article  PubMed  Google Scholar 

  50. Popovic D, Popovic M, Sinkjaer T, Stefanovic A, Schwirtlich L. Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can J Physiol Pharmacol. 2004;82:749–56.

    Article  CAS  PubMed  Google Scholar 

  51. Popović D, Stojanović A, Pjanović A, Radosavljević S, Popović M, Jović S, Vulović D. Clinical evaluation of the bionic glove. Arch Phys Med Rehabil. 1999;80:299–304.

    Article  PubMed  Google Scholar 

  52. Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil. 1997;78:608–14.

    Article  CAS  PubMed  Google Scholar 

  53. Rebersek S, Vodovnik L. Proportionally controlled functional electrical stimulation of hand. Arch Phys Med Rehabil. 1973;54:378–82.

    CAS  PubMed  Google Scholar 

  54. Sullivan JE, Hedman LD. A home program of sensory and neuromuscular electrical stimulation with upper-limb task practice in a patient 5 years after a stroke. Phys Ther. 2004;84:1045–54.

    PubMed  Google Scholar 

  55. Sullivan JE, Hedman LD. Effects of home-based sensory and motor amplitude electrical stimulation on arm dysfunction in chronic stroke. Clin Rehabil. 2007;21:142–50.

    Article  PubMed  Google Scholar 

  56. Popovic MR, Thrasher TA, Zivanovic P, Takaki M, Hajek P. Neuroprosthesis for retraining reaching and grasping functions in severe hemiplegic patients. Neuromodulation. 2005;8:58–72.

    Article  PubMed  Google Scholar 

  57. Thrasher TA, Zivanovic V, McIlroy W, Popovic MR. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil Neural Repair. 2008;22:706–14.

    Article  PubMed  Google Scholar 

  58. Gritsenko V, Prochazka A. A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function. Arch Phys Med Rehabil. 2004;85:881–5.

    Article  PubMed  Google Scholar 

  59. Popovic MR, Keller T, Pappas IP, Dietz V, Morari M. Surface-stimulation technology for grasping and walking neuroprosthesis. IEEE Eng Med Biol Mag. 2001;20:82–93.

    Article  CAS  PubMed  Google Scholar 

  60. Popović MB. Control of neural prostheses for grasping and reaching. Med Eng Phys. 2003;25:41–50.

    Article  PubMed  Google Scholar 

  61. Glanz M, Klawansky S, Stason W, Berkey C, Chalmers TC. Functional electrostimulation in poststroke rehabilitation: a meta-analysis of the randomized controlled trials. Arch Phys Med Rehabil. 1996;77:549–53.

    Article  CAS  PubMed  Google Scholar 

  62. Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke. 2002;33:1589–94.

    Article  PubMed  Google Scholar 

  63. Ring H, Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med. 2005;37:32–6.

    Article  PubMed  Google Scholar 

  64. Kapadia NM, Nagai MK, Zivanovic V, Bernstein J, Woodhouse J, Rumney P, Popovic MR. Functional electrical stimulation therapy for recovery of reaching and grasping in severe chronic paediatric stroke patients. J Child Neurol. 2014;29(4):493–9.

    Article  PubMed  Google Scholar 

  65. Popovic MR, Thrasher TA. Neuroprostheses, Encyclopedia of biomaterials and biomedical engineering. New York: Marcel Dekker Inc.; 2004. p. 1056–65.

    Google Scholar 

  66. Mangold S, Keller T, Curt A, Dietz V. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord. 2005;43:1–13.

    Article  CAS  PubMed  Google Scholar 

  67. Popovic MR, Thrasher TA, Adams ME, Takes V, Zivanovic V, Tonack MI. Functional electrical therapy: retraining grasping in spinal cord injury. Spinal Cord. 2006;44:143–51.

    Article  CAS  PubMed  Google Scholar 

  68. Popovic MR, Kapadia N, Zivanovic V, Furlan J, Craven C, McGillivray C. Functional electrical stimulation therapy for restoring voluntary grasping function in patietns with sub-acute incomplete tetraplegia: a randomized single-blind clinical trial. Neurorehabil Neural Repair. 2011;25(5):433–42.

    Article  PubMed  Google Scholar 

  69. Kapadia NM, Zivanovic V, Furlan J, Craven BC, McGillivray C, Popovic MR. Toronto Rehabilitation Institute’s functional electrical stimulation therapy for grasping in traumatic incomplete spinal cord injury: randomized control trial. Artif Organs. 2011;35(3):212–6.

    Article  PubMed  Google Scholar 

  70. Kapadia N, Zivanovic V, Popovic MR. Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: pilot study. Top Spinal Cord Inj Rehabil. 2013;19(4):279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Desai N, Bagher S, Popovic MR. Influence of different rehabilitation therapy models on patient outcomes: hand functiontherapy in individuals with incomplete SCI. J Spinal Cord Med. 2014;37(6):734–43.

    Article  Google Scholar 

  72. Tomović R, Popović D. Nonanalytical methods for motor control. World Scientific Publishing Company; Singapore; 1995.

    Google Scholar 

  73. Andrews BJ, Baxendale RH, Barnett R, Phillips GF, Yamazaki T, Paul JP, Freeman PA. Hybrid FES orthosis incorporating closed loop control and sensory feedback. J Biomed Eng. 1988;10:189–95.

    Article  CAS  PubMed  Google Scholar 

  74. Solomonow M. Biomechanics and physiology of a practical powered walking orthosis for paraplegics. In: Stein RB, Peckham P, Popovic D, editors. Neural prostheses: replacing motor function after disease or disability. Oxford University Press; London; 1992. p. 202–32.

    Google Scholar 

  75. Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell. 2014;159(7):1626–39.

    Article  CAS  PubMed  Google Scholar 

  76. Freeman C, Hughes A, Burridge J, Chappell P, Lewin P, Rogers E. Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng Pract. 2009;17:368–81.

    Article  Google Scholar 

  77. Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F. The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans Neural Sys Rehabil Eng. 2009;17:38–45.

    Article  CAS  Google Scholar 

  78. Crema A, Mancuso M, Frisoli A, Salsedo F, Raschellà F, Micera S. A hybrid NMES-exoskeleton for real objects interaction. IEEE Neural Eng Conference. 2015.

    Google Scholar 

  79. Bergamasco M. An exoskeleton structure for physical interaction with a human being. PCT Application N. W02013186701 (A1). 2013.

    Google Scholar 

  80. Granat MH, Ferguson AC, Andrews BJ, Delargy M. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury—observed benefits during gait studies. Paraplegia. 1993;31:207–15.

    Article  CAS  PubMed  Google Scholar 

  81. Kawashima N, Popovic MR, Zivanovic V. Effect of intensive functional electrical stimulation therapy on the upper limb motor recovery after stroke: single case study of a chronic stroke patient. Physiother Can. 2013;65(1):20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33:181–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res. 2000;131:135–43.

    Article  CAS  PubMed  Google Scholar 

  84. Chae J, Yu D. Neuromuscular stimulation for motor relearning in hemiplegia. Crit Rev Phys Rehabil Med. 1999;11:208–29.

    Article  Google Scholar 

  85. Thompson A, Doran B, Stein R. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Exp Brain Res. 2006;170:216–26.

    Article  PubMed  Google Scholar 

  86. Thompson AK, Stein R. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp Brain Res. 2004;159:491–500.

    Article  Google Scholar 

  87. McGie SC, Masani K, Popovic MR. Failure of spinal paired associative stimulation to induce neuroplasticity in the human corticospinal tract. J Spinal Cord Med. 2014;37(5):565–74.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005;85(4):358–64.

    PubMed  Google Scholar 

  89. Prochazka A. Sensory control of normal movement and of movement aided by neural prostheses. J Anat. 2015;227(2):167–77.

    Article  PubMed  Google Scholar 

  90. Kawai R, Markman T, Poddar R, Ko R, Fantana AL, Dhawale AK, Kampff AR, Ölveczky BP. Motor cortex is required for learning but not for executing a motor skill. Neuron. 2015;86(3):800–12.

    Article  CAS  PubMed  Google Scholar 

  91. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36:1960–6.

    Article  CAS  PubMed  Google Scholar 

  92. Popovic MR, Curt A, Keller T, Dietz V. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord. 2001;39:403–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milos R. Popovic PhD, Dipl El Eng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Popovic, M.R., Masani, K., Micera, S. (2016). Functional Electrical Stimulation Therapy: Recovery of Function Following Spinal Cord Injury and Stroke. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics