Skip to main content

Toward Flexible Assistance for Locomotor Training: Design and Clinical Testing of a Cable-Driven Robot for Stroke, Spinal Cord Injury, and Cerebral Palsy

  • Chapter
  • First Online:
Neurorehabilitation Technology
  • 2600 Accesses

Abstract

A cable-driven locomotor training system (3DCaLT) has been developed to improve the locomotor function in adults following hemispheric stroke or spinal cord injury (SCI) and children with cerebral palsy (CP). A key component of this new system is that it is highly backdrivable and allows for variation in the trajectory of the gait pattern. In addition, this new robotic system can provide controlled forces in both the sagittal and frontal planes at targeted phases of gait. The new robotic trainer uses a lightweight cable driven with controlled forces applied to the pelvis and leg (rather than a controlled trajectory). The 3DCaLT is compliant and gives patients the freedom to voluntarily move their pelvis and legs in a natural gait pattern while providing controlled assistance/resistance forces during body-weight-supported treadmill training (BWSTT).

Thirty individuals post stroke, ten patients with SCI, and ten children with CP were recruited to participate in these pilot studies to test the feasibility of using the 3DCaLT for gait training. Results from these clinical studies indicate that locomotor gait training using the 3DCaLT resulted in a significant improvement of walking function in adults post stroke, with SCI, and children with CP. Thus, it seems feasible to use a flexible cable-driven robotic system, i.e., 3DCaLT, to improve the locomotor function in adults post stroke or with SCI, and children with CP. Further studies with a large sample size of subjects and a comparison of the current paradigm with conventional BWSTT are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80:688–700.

    CAS  PubMed  Google Scholar 

  2. Dietz V, Colombo G, Jensen L, et al. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37:574–82.

    Article  CAS  PubMed  Google Scholar 

  3. Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30:229–38.

    Article  CAS  PubMed  Google Scholar 

  4. Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86:672–80.

    Article  PubMed  Google Scholar 

  5. Dobkin B, Apple D, Barbeau H, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005;29:127–37.

    Article  PubMed  Google Scholar 

  7. Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke. 1995;26:976–81.

    Article  CAS  PubMed  Google Scholar 

  8. Visintin M, Barbeau H, Korner-Bitensky N, et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29:1122–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil. 2002;83:683–91.

    Article  PubMed  Google Scholar 

  10. Pohl M, Mehrholz J, Ritschel C, et al. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke. 2002;33:553–8.

    Article  PubMed  Google Scholar 

  11. Macko RF, Ivey FM, Forrester LW, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36:2206–11.

    Article  PubMed  Google Scholar 

  12. Silver B, Demaerschalk B, Merino JG, et al. Improved outcomes in stroke thrombolysis with pre-specified imaging criteria. Can J Neurol Sci. 2001;28:113–9.

    CAS  PubMed  Google Scholar 

  13. Trueblood PR. Partial body weight treadmill training in persons with chronic stroke. NeuroRehabilitation. 2001;16:141–53.

    CAS  PubMed  Google Scholar 

  14. Willoughby KL, Dodd KJ, Shields N. A systematic review of the effectiveness of treadmill training for children with cerebral palsy. Disabil Rehabil. 2009;31:1971–9.

    Article  PubMed  Google Scholar 

  15. Dodd KJ, Foley S. Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol. 2007;49:101–5.

    Article  PubMed  Google Scholar 

  16. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    Article  PubMed  Google Scholar 

  17. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler 3rd ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  18. Harwin WS, Patton JL, Edgerton VR. Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE. 2006;94(9):1717–26.

    Article  Google Scholar 

  19. Perry J, Garrett M, Gronley JK, et al. Classification of walking handicap in the stroke population. Stroke. 1995;26:982–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jørgensen HS, Nakayama H, Raaschou HO, et al. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:27–32.

    Article  PubMed  Google Scholar 

  21. Goldie PA, Matyas TA, Evans OM. Deficit and change in gait velocity during rehabilitation after stroke. Arch Phys Med Rehabil. 1996;77:1074–82.

    Article  CAS  PubMed  Google Scholar 

  22. Treger I, Shames J, Giaquinto S, et al. Return to work in stroke patients. Disabil Rehabil. 2007;29:1397–403.

    Article  CAS  PubMed  Google Scholar 

  23. von Schroeder HP, Coutts RD, Lyden PD, et al. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32:25–31.

    Google Scholar 

  24. Dean CM, Richards CL, Malouin F. Walking speed over 10 metres overestimates locomotor capacity after stroke. Clin Rehabil. 2001;15:415–21.

    Article  CAS  PubMed  Google Scholar 

  25. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003;84:1185–93.

    Article  PubMed  Google Scholar 

  26. de Haart M, Geurts AC, Huidekoper SC, et al. Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil. 2004;85:886–95.

    Article  PubMed  Google Scholar 

  27. Chen G, Patten C, Kothari DH, et al. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22:51–6.

    Article  PubMed  Google Scholar 

  28. Dobkin BH. The clinical science of neurologic rehabilitation. 2nd ed. New York: Oxford University Press; 2003.

    Google Scholar 

  29. NSCISC. Spinal cord injury: facts and figures at a glance. Birmingham: National Spinal Cord Injury Statistical Center; 2014.

    Google Scholar 

  30. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44:523–9.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson CS, Carter KN, Brownlee WJ, et al. Very long-term outcome after stroke in Auckland, New Zealand. Stroke. 2004;35:1920–4.

    Article  PubMed  Google Scholar 

  32. Field-Fote EC. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Phys Ther. 2000;80:477–84.

    CAS  PubMed  Google Scholar 

  33. Post M, Noreau L. Quality of life after spinal cord injury. J Neurol Phys Ther. 2005;29:139–46.

    Article  PubMed  Google Scholar 

  34. Noreau L, Fougeyrollas P, Post M, et al. Participation after spinal cord injury: the evolution of conceptualization and measurement. J Neurol Phys Ther. 2005;29:147–56.

    Article  PubMed  Google Scholar 

  35. Barbeau H, McCrea DA, O’Donovan MJ, et al. Tapping into spinal circuits to restore motor function. Brain Res Brain Rev. 1999;30:27–51.

    Article  CAS  Google Scholar 

  36. Pepin A, Ladouceur M, Barbeau H. Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed. Spinal Cord. 2003;41:271–9.

    Article  CAS  PubMed  Google Scholar 

  37. Leroux A, Fung J, Barbeau H. Postural adaptation to walking on inclined surfaces: II. Strategies following spinal cord injury. Clin Neurophysiol. 2006;117:1273–82.

    Article  PubMed  Google Scholar 

  38. Rosen MG, Dickinson JC. The incidence of cerebral palsy. Am J Obstet Gynecol. 1992;167:417–23.

    Article  CAS  PubMed  Google Scholar 

  39. Odding E, Roebroeck ME, Stam HJ. The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disabil Rehabil. 2006;28:183–91.

    Article  PubMed  Google Scholar 

  40. Van Naarden Braun K, Christensen D, Doernberg N, Schieve L, Rice C, Wiggins L, Schendel D, Yeargin-Allsopp M. Trends in the prevalence of autism spectrum disorder, cerebral palsy, hearing loss, intellectual disability, and vision impairment, metropolitan Atlanta, 1991–2010. PLoS One. 2015;10:e0124120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pharoah PO, Cooke T, Johnson MA, King R, Mutch L. Epidemiology of cerebral palsy in England and Scotland, 1984–9. Arch Dis Child Fetal Neonatal Ed. 1998;79:F21–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hutton JL, Pharoah PO. Effects of cognitive, motor, and sensory disabilities on survival in cerebral palsy. Arch Dis Child. 2002;86:84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duffy CM, Hill AE, Cosgrove AP, Corry IS, Graham HK. Energy consumption in children with spina bifida and cerebral palsy: a comparative study. Dev Med Child Neurol. 1996;38:238–43.

    Article  CAS  PubMed  Google Scholar 

  44. Wilmshurst S, Ward K, Adams JE, Langton CM, Mughal MZ. Mobility status and bone density in cerebral palsy. Arch Dis Child. 1996;75:164–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chien F, DeMuth S, Knutson L, Fowler E. The use of the 600 yard walk run test to assess walking endurance and speed in children with cerebral palsy. Pediatr Phys Ther. 2006;18:86–7.

    Article  Google Scholar 

  46. Lepage C, Noreau L, Bernard PM. Association between characteristics of locomotion and accomplishment of life habits in children with cerebral palsy. Phys Ther. 1998;78:458–69.

    CAS  PubMed  Google Scholar 

  47. Dobkin BH. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol. 2009;22:563–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  49. Edgerton VR, de Leon RD, Tillakaratne N, et al. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    CAS  PubMed  Google Scholar 

  50. Henry FM. Specificity vs. generality in learning motor skill. In: Brown RC, Kenyon GS, editors. Classical studies on physical activity. Englewood Cliffs: Prentice-Hall; 1968. p. 331–40.

    Google Scholar 

  51. Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–103.

    Article  PubMed  Google Scholar 

  52. Lotze M, Braun C, Birbaumer N, Anders S, et al. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.

    Article  PubMed  Google Scholar 

  53. Barbeau H, Fung J. The role of rehabilitation in the recovery of walking in the neurological population. Curr Opin Neurol. 2001;14:735–40.

    Article  CAS  PubMed  Google Scholar 

  54. Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412:84–95.

    Article  CAS  PubMed  Google Scholar 

  55. Rossignol S, Martinez M, Escalona M, Kundu A, Delivet-Mongrain H, Alluin O, Gossard JP. The “beneficial” effects of locomotor training after various types of spinal lesions in cats and rats. Prog Brain Res. 2015;218:173–98.

    Article  PubMed  Google Scholar 

  56. Hesse S, Werner C. Partial body weight supported treadmill training for gait recovery following stroke. Adv Neurol. 2003;92:423–8.

    PubMed  Google Scholar 

  57. Nilsson L, Carlsson J, Danielsson A, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001;15:515–27.

    Article  CAS  PubMed  Google Scholar 

  58. Kosak MC, Reding MJ. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair. 2000;14:13–9.

    Article  CAS  PubMed  Google Scholar 

  59. Wernig A, Muller S, Nanassy A, et al. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci. 1995;7:823–9.

    Article  CAS  PubMed  Google Scholar 

  60. Willoughby KL, Dodd KJ, Shields N, Foley S. Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2010;91:333–9.

    Article  PubMed  Google Scholar 

  61. Swe NN, Sendhilnnathan S, van Den Berg M, Barr C. Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: a randomised controlled trial. Clin Rehabil. 2015;29:1108–16.

    Article  PubMed  Google Scholar 

  62. Grecco LA, Zanon N, Sampaio LM, Oliveira CS. A comparison of treadmill training and overground walking in ambulant children with cerebral palsy: randomized controlled clinical trial. Clin Rehabil. 2013;27:686–96.

    Article  PubMed  Google Scholar 

  63. Valentin-Gudiol M, Bagur-Calafat C, Girabent-Farrés M, Hadders-Algra M, Mattern-Baxter K, Angulo-Barroso R. Treadmill interventions with partial body weight support in children under six years of age at risk of neuromotor delay: a report of a Cochrane systematic review and meta-analysis. Eur J Phys Rehabil Med. 2013;49:67–91.

    CAS  PubMed  Google Scholar 

  64. Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. J Neurol Phys Ther. 2009;33:27–44.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mutlu A, Krosschell K, Spira DG. Treadmill training with partial body-weight support in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51:268–75.

    Article  PubMed  Google Scholar 

  66. Schindl MR, Forstner C, Kern H, Hesse S. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Arch Phys Med Rehabil. 2000;81:301–6.

    Article  CAS  PubMed  Google Scholar 

  67. Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37:693–700.

    CAS  PubMed  Google Scholar 

  68. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37:701–8.

    CAS  PubMed  Google Scholar 

  69. HealthSouth® http://www.healthsouth.com. Accessed 18 Oct 2010.

  70. Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001;39:252–5.

    Article  CAS  PubMed  Google Scholar 

  71. Hornby TG, Campbell DD, Zemon DH, et al. Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury. Top Spinal Cord Inj Rehabil. 2005;11:1–17.

    Article  Google Scholar 

  72. Husemann B, Müller F, Krewer C, et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38:349–54.

    Article  PubMed  Google Scholar 

  73. Mehrholz J, Werner C, Kugler J, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2007;17:CD006185.

    Google Scholar 

  74. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23:5–13.

    Article  PubMed  Google Scholar 

  75. Hornby TG, Campbell DD, Kahn JH, et al. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39:1786–92.

    Article  PubMed  Google Scholar 

  76. Pohl M, Werner C, Holzgraefe M, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21:17–27.

    Article  CAS  PubMed  Google Scholar 

  77. Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012;44:193–9.

    Article  PubMed  Google Scholar 

  78. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;7:CD006185.

    PubMed  Google Scholar 

  79. Swinnen E, Duerinck S, Baeyens JP, et al. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42:520–6.

    Article  PubMed  Google Scholar 

  80. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schäfer J, Sennhauser FH, Heinen F, Knecht B, Dabrowski E, Borggraefe I. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94:615–20.

    Article  CAS  PubMed  Google Scholar 

  81. Drużbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, Durmala J, Czernuszenko A, Bonikowski M, Sobota G. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med. 2013;45:358–63.

    Article  PubMed  Google Scholar 

  82. Edgerton VR, Roy RR. Robotic training and spinal cord plasticity. Brain Res Bull. 2009;78:4–12.

    Article  PubMed  Google Scholar 

  83. Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005;20:184–93.

    Article  Google Scholar 

  84. Wolbrecht ET, Chan V, Reinkensmeyer DJ, et al. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:286–97.

    Article  PubMed  Google Scholar 

  85. Cai LL, Fong AJ, Otoshi CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006;26:10564–8.

    Article  CAS  PubMed  Google Scholar 

  86. Wu M, Hornby TG, Landry JM, Roth H, et al. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 2011;33:256–60.

    Article  PubMed  Google Scholar 

  87. Wu M, Kim J, Arora P, Gaebler-Spira DJ, Zhang Y. Locomotor training through a 3D cable-driven robotic system for walking function in children with cerebral palsy: a pilot study. Conf Proc IEEE Eng Med Biol Soc. 2014;177:3529–32.

    Google Scholar 

  88. Perry J. Gait analysis: normal and pathological function. Thorofare: SLACK; 1992.

    Google Scholar 

  89. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168:368–83.

    Article  PubMed  Google Scholar 

  90. Sawaki L, Wu CW, Kaelin-Lang A, Cohen LG. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke. 2006;37:246–7.

    Article  PubMed  Google Scholar 

  91. Wu M, Landry JM, Kim J, Schmit BD, Yen SC, Macdonald J. Robotic resistance/assistance training improves locomotor function in individuals poststroke: a randomized controlled study. Arch Phys Med Rehabil. 2014;95:799–806.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-minute walk test. Arch Phys Med Rehabil. 1999;80:837–41.

    Article  CAS  PubMed  Google Scholar 

  93. Berg K, Wood-Dauphinee S, Williams JI. The balance scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27:27–36.

    CAS  PubMed  Google Scholar 

  94. Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev. 2012;11:CD006676.

    PubMed  Google Scholar 

  95. Lam T, Pauhl K, Ferguson A, Malik RN, Kin B, Krassioukov A, Eng JJ. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: pilot study. J Rehabil Res Dev. 2015;52:113–30.

    Article  PubMed  Google Scholar 

  96. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86:1466–78.

    Article  PubMed  Google Scholar 

  97. Yen SC, Landry JM, Wu M. Size of kinematic error affects retention of locomotor adaptation in human spinal cord injury. J Rehabil Res Dev. 2013;50(9):1187–200.

    Article  PubMed  Google Scholar 

  98. Houldin A, Luttin K, Lam T. Locomotor adaptations and aftereffects to resistance during walking in individuals with spinal cord injury. J Neurophysiol. 2011;106:247–58.

    Article  PubMed  Google Scholar 

  99. Yen SC, Schmit BD, Landry JM, Roth H, Wu M. Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI. Exp Brain Res. 2012;216:473–82.

    Article  PubMed  Google Scholar 

  100. Reisman DS, McLean H, Keller J, Danks KA, Bastian AJ. Repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabil Neural Repair. 2013;27:460–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wu M, Landry JM, Schmit BD, Hornby TG, Yen SC. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2012;93:782–9.

    Article  PubMed  Google Scholar 

  102. Inman V, Ralston HJ, Todd F. Human walking. Baltimore: Williams and Wilkins; 1981.

    Google Scholar 

  103. Ballaz L, Robert M, Parent A, Prince F, Lemay M. Impaired visually guided weight-shifting ability in children with cerebral palsy. Res Dev Disabil. 2014;35:1970–7.

    Article  PubMed  Google Scholar 

  104. Liao HF, Jeng SF, Lai JS, Cheng CK, Hu MH. The relation between standing balance and walking function in children with spastic diplegic cerebral palsy. Dev Med Child Neurol. 1997;39:106–12.

    Article  CAS  PubMed  Google Scholar 

  105. Mulder T, Hochstenbach J. Adaptability and flexibility of the human motor system: implications for neurological rehabilitation. Neural Plast. 2001;8:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.

    Article  CAS  PubMed  Google Scholar 

  107. Andersson C, Asztalos L, Mattsson E. Six-minute walk test in adults with cerebral palsy. A study of reliability. Clin Rehabil. 2006;20:488–95.

    Article  PubMed  Google Scholar 

  108. Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989;31:341–52.

    Article  CAS  PubMed  Google Scholar 

  109. Yen SC, Schmit BD, Wu M. Using swing resistance and assistance to improve gait symmetry in individuals post-stroke. Hum Mov Sci. 2015;42:212–24.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Savin DN, Tseng SC, Whitall J, Morton SM. Poststroke hemiparesis impairs the rate but not magnitude of adaptation of spatial and temporal locomotor features. Neurorehabil Neural Repair. 2013;27:24–34.

    Article  PubMed  Google Scholar 

  111. Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJ, Burdick JW, Roy RR. Training locomotor networks. Brain Res Rev. 2008;57:241–54.

    Article  PubMed  Google Scholar 

  112. Huang VS, Shadmehr R. Persistence of motor memories reflects statistics of the learning event. J Neurophysiol. 2009;102:931–40.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Klassen J, Tong C, Flanagan JR. Learning and recall of incremental kinematic and dynamic sensorimotor transformations. Exp Brain Res. 2005;164:250–9.

    Article  PubMed  Google Scholar 

  114. Kluzik J, Diedrichsen J, Shadmehr R, Bastian AJ. Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J Neurophysiol. 2008;100:1455–64.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lewek MD, Cruz TH, Moore JL, et al. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89:829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev. 2008;16:CD006676.

    Google Scholar 

  117. Scivoletto G, Cosentino E, Mammone A, et al. Inflammatory myelopathies and traumatic spinal cord lesions: comparison of functional and neurological outcomes. Phys Ther. 2008;88:471–84.

    Article  PubMed  Google Scholar 

  118. Lemay JF, Nadeau S. Standing balance assessment in ASIA D paraplegic and tetraplegic participants: concurrent validity of the Berg Balance Scale. Spinal Cord. 2010;48:245–50.

    Article  PubMed  Google Scholar 

  119. Hornby TG, Reinkensmeyer DJ, Chen D. Manually-assisted versus robotic-assisted body weight-supported treadmill training in spinal cord injury: what is the role of each? PM R. 2010;2:214–21.

    Article  PubMed  Google Scholar 

  120. Barbeau H, Fung J, Leroux A, et al. A review of the adaptability and recovery of locomotion after spinal cord injury. Prog Brain Res. 2002;137:9–25.

    Article  CAS  PubMed  Google Scholar 

  121. van Hedel HJ, Dietz V. Rehabilitation of locomotion after spinal cord injury. Restor Neurol Neurosci. 2010;28:123–34.

    PubMed  Google Scholar 

  122. Norman KE, Pépin A, Barbeau H. Effects of drugs on walking after spinal cord injury. Spinal Cord. 1998;36:699–715.

    Article  CAS  PubMed  Google Scholar 

  123. Winter DA, MacKinnon CD, Ruder GK, Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Prog Brain Res. 1993;97:359–67.

    Article  CAS  PubMed  Google Scholar 

  124. Aoyagi D, Ichinose WE, Harkema SJ, et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007;15:387–400.

    Article  PubMed  Google Scholar 

  125. Veneman JF, Kruidhof R, Hekman EE, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:379–86.

    Article  PubMed  Google Scholar 

  126. Schmidt H, Werner C, Bernhardt R, et al. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil. 2007;9(4):2.

    Article  Google Scholar 

  127. Hesse S, Tomelleri C, Bardeleben A, Werner C, Waldner A. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. J Rehabil Res Dev. 2012;49:613–22.

    Article  PubMed  Google Scholar 

  128. Riener R, Lünenburger L, Jezernik S, et al. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13:380–94.

    Article  PubMed  Google Scholar 

  129. Duschau-Wicke A, von Zitzewitz J, Caprez A, et al. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18:38–48.

    Article  PubMed  Google Scholar 

  130. Agrawal SK, Banala SK, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2007;15:410–20.

    Article  PubMed  Google Scholar 

  131. Gottschall JS, Kram R. Energy cost and muscular activity required for leg swing during walking. J Appl Physiol. 2005;99:23–30.

    Article  PubMed  Google Scholar 

  132. Torres-Oviedo G, Bastian AJ. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation. J Neurosci. 2010;30:17015–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Reisman DS, Wityk R, Silver K, Bastian AJ. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair. 2009;23:735–44.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84.

    Article  PubMed  Google Scholar 

  135. Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil. 2014;95:2006–12.

    Article  PubMed  Google Scholar 

  136. Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med. 2012;35:96–101.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

These studies were supported by NIH/NICHD, R21HD058267, R21HD066261, and PVA, #2552, NIDRR/RERC, H133E100007. We thank Dr. Schmit BD, Dr. Hornby TG, Dr. Gaebler-Spira DJ, Dr. Rymer WZ, Dr. Yen SC, Dr. Wei F, Ms. Kim J, Ms. Arora P, Ms. Rafferty M, and Mrs. Zhang YH for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Wu, M., Landry, J.M. (2016). Toward Flexible Assistance for Locomotor Training: Design and Clinical Testing of a Cable-Driven Robot for Stroke, Spinal Cord Injury, and Cerebral Palsy. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics