Skip to main content

Movement Neuroscience Foundations of Neurorehabilitation

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Research into the neural control of movement has elucidated important principles that can provide guidelines to rehabilitation professionals for enhancing recovery of motor function in stroke patients. In this chapter, we elaborate principles that have been derived from research on neural control of movement, including optimal control, impedance control, motor lateralization, and principles of motor learning. Research on optimal control has indicated that two major categories of cost contribute to motor planning: explicit task-level costs, such as movement accuracy and speed, and implicit costs, such as energy and movement variability. Impedance control refers to neural mechanisms that modulate rapid sensorimotor circuits, such as reflexes, in order to impede perturbations that cannot be anticipated prior to movement. Research on motor lateralization has indicated that different aspects of motor control have been specialized to the two cerebral hemispheres. This organization leads to hemisphere-specific motor deficits in both the ipsilesional and contralesional arms of stroke patients. Ipsilesional deficits increase with severity of contralesional impairment level and have a substantial effect on functional independence. Finally, motor learning research has indicated that different neural mechanisms underlie different aspects of motor learning, such as adaptation vs skill learning, and that learning different aspects of tasks can generalize across different coordinates. In this chapter, we discuss the neurobiological basis of these principles and elaborate the implications for designing and implementing occupational and physical therapy treatment for movement deficits in stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teasell R, Meyer MJ, McClure A, et al. Stroke rehabilitation: an international perspective. Top Stroke Rehabil. 2009;16(1):44–56.

    Article  PubMed  Google Scholar 

  2. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C. Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care: Off J Eur Soc Eng Med. 1999;7(6):419–23.

    CAS  Google Scholar 

  4. Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999;53(8):1874–6.

    Article  CAS  PubMed  Google Scholar 

  5. Krebs HI, Volpe BT, Aisen ML, Hogan N. Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev. 2000;37(6):639–52.

    CAS  PubMed  Google Scholar 

  6. Fazekas G, Horvath M, Troznai T, Toth A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J Rehabil Med. 2007;39(7):580–2.

    Article  PubMed  Google Scholar 

  7. Morasso P. Spatial control of arm movements. Exp Brain Res. 1981;42(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  8. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780–4.

    Article  CAS  PubMed  Google Scholar 

  9. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703.

    CAS  PubMed  Google Scholar 

  10. Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern. 1989;61(2):89–101.

    Article  CAS  PubMed  Google Scholar 

  11. Atkeson CG, Hollerbach JM. Kinematic features of unrestrained vertical arm movements. J Neurosci. 1985;5(9):2318–30.

    CAS  PubMed  Google Scholar 

  12. Soechting JF, Buneo CA, Herrmann U, Flanders M. Moving effortlessly in three dimensions: does Donders’ law apply to arm movement? J Neurosci. 1995;15(9):6271–80.

    CAS  PubMed  Google Scholar 

  13. Goble DJ, Brown SH. Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp Brain Res. 2007;180(4):693–704.

    Article  PubMed  Google Scholar 

  14. Goble DJ, Brown SH. The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev. 2008;32(3):598–610.

    Article  PubMed  Google Scholar 

  15. Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5(11):1226–35.

    Article  CAS  PubMed  Google Scholar 

  16. Liu D, Todorov E. Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci. 2007;27(35):9354–68.

    Article  CAS  PubMed  Google Scholar 

  17. Latash ML. What are “normal movements” in atypical populations? Behav Brain Sci. 1996;19:55–68.

    Article  Google Scholar 

  18. Pruszynski JA, Kurtzer I, Scott SH. Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J Neurophysiol. 2008;100(1):224–38.

    Article  PubMed  Google Scholar 

  19. Wright PJ, Fortinsky RH, Covinsky KE, Anderson PA, Landefeld CS. Delivery of preventive services to older black patients using neighborhood health centers. J Am Geriatr Soc. 2000;48(2):124–30.

    Article  CAS  PubMed  Google Scholar 

  20. Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50(6):311–9.

    CAS  PubMed  Google Scholar 

  21. Burgess PR, Cooper TA, Gottlieb GL, Latash ML. The sense of effort and two models of single-joint motor control. Somatosens Mot Res. 1995;12(3–4):343–58.

    Article  CAS  PubMed  Google Scholar 

  22. Ballester BR, Nirme J, Duarte E, et al. The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J Neuroeng Rehabil. 2015;12:50.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tatton WG, Forner SD, Gerstein GL, Chambers WW, Liu CN. The effect of postcentral cortical lesions on motor responses to sudden upper limb displacements in monkeys. Brain Res. 1975;96(1):108–13.

    Article  CAS  PubMed  Google Scholar 

  24. Matthews PB. The human stretch reflex and the motor cortex. Trends Neurosci. 1991;14(3):87–91.

    Article  CAS  PubMed  Google Scholar 

  25. Hammond PH. The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J Physiol. 1956;132(1):17–8P.

    CAS  PubMed  Google Scholar 

  26. Lacquaniti F, Borghese NA, Carrozzo M. Transient reversal of the stretch reflex in human arm muscles. J Neurophysiol. 1991;66(3):939–54.

    CAS  PubMed  Google Scholar 

  27. Franklin DW, So U, Kawato M, Milner TE. Impedance control balances stability with metabolically costly muscle activation. J Neurophysiol. 2004;92(5):3097–105.

    Article  PubMed  Google Scholar 

  28. Mutha PK, Boulinguez P, Sainburg RL. Visual modulation of proprioceptive reflexes during movement. Brain Res. 2008;1246:54–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beer RF, Dewald JP, Rymer WZ. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res. 2000;131(3):305–19.

    Article  CAS  PubMed  Google Scholar 

  30. Gazzaniga MS. The split brain revisited. Sci Am. 1998;279(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  31. Sainburg RL. Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res. 2002;142(2):241–58.

    Article  PubMed  Google Scholar 

  32. Yadav V, Sainburg RL. Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience. 2011;196:153–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yadav V, Sainburg RL. Handedness can be explained by a serial hybrid control scheme. Neuroscience. 2014;278:385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain. 2007;130(Pt 8):2146–58.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mutha PK, Haaland KY, Sainburg RL. Rethinking motor lateralization: specialized but complementary mechanisms for motor control of each arm. PLoS One. 2013;8(3):e58582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mutha PK, Haaland KY, Sainburg RL. The effects of brain lateralization on motor control and adaptation. J Mot Behav. 2012;44(6):455–69.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mutha PK, Stapp LH, Sainburg RL, Haaland KY. Frontal and parietal cortex contributions to action modification. Cortex. 2014;57:38–50.

    Google Scholar 

  38. Mutha PK, Sainburg RL. Shared bimanual tasks elicit bimanual reflexes during movement. J Neurophysiol. 2009;102(6):3142–55.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schaefer SY, Mutha PK, Haaland KY, Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex. 2012;22(6):1407–19.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bisazza A, Rogers LJ, Vallortigara G. The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci Biobehav Rev. 1998;22(3):411–26.

    Article  CAS  PubMed  Google Scholar 

  41. MacNeilage PF, Rogers LJ, Vallortigara G. Origins of the left & right brain. Sci Am. 2009;301(1):60–7.

    Article  PubMed  Google Scholar 

  42. Sainburg RL. Convergent models of handedness and brain lateralization. Front Psychol. 2014;5:1092.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kawashima R, Roland PE, O’Sullivan BT. Activity in the human primary motor cortex related to ipsilateral hand movements. Brain Res. 1994;663(2):251–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kuypers HG. A new look at the organization of the motor system. Prog Brain Res. 1982;57:381–403.

    Article  CAS  PubMed  Google Scholar 

  45. Gonzalez CL, Gharbawie OA, Williams PT, Kleim JA, Kolb B, Whishaw IQ. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur J Neurosci. 2004;20(12):3442–52.

    Article  PubMed  Google Scholar 

  46. Grabowski M, Brundin P, Johansson BB. Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke. 1993;24(6):889–95.

    Article  CAS  PubMed  Google Scholar 

  47. Grabowski M, Nordborg C, Johansson BB. Sensorimotor performance and rotation correlate to lesion size in right but not left hemisphere brain infarcts in the spontaneously hypertensive rat. Brain Res. 1991;547(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  48. Mutha PK, Sainburg RL, Haaland KY. Left parietal regions are critical for adaptive visuomotor control. J Neurosci. 2011;31(19):6972–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mutha PK, Sainburg RL, Haaland KY. Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain. 2011;134(Pt 12):3647–61.

    Article  PubMed  Google Scholar 

  50. Haaland KY, Schaefer SY, Knight RT, et al. Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage. Exp Brain Res. 2009;196(2):195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schaefer SY, Haaland KY, Sainburg RL. Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia. 2009;47(13):2953–66.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chestnut C, Haaland KY. Functional significance of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil. 2008;89(1):62–8.

    Article  PubMed  Google Scholar 

  53. Haaland KY. Left hemisphere dominance for movement. Clin Neuropsychol. 2006;20(4):609–22.

    Article  PubMed  Google Scholar 

  54. Wetter S, Poole JL, Haaland KY. Functional implications of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil. 2005;86(4):776–81.

    Article  PubMed  Google Scholar 

  55. Haaland KY, Prestopnik JL, Knight RT, Lee RR. Hemispheric asymmetries for kinematic and positional aspects of reaching. 2004. Brain May;127(Pt 5):1145–58.

    Google Scholar 

  56. Prestopnik J, Haaland K, Knight R, Lee R. Hemispheric dominance for open and closed loop movements. Soc Neurosci Abstr. 2003;30(1).

    Google Scholar 

  57. Winstein CJ, Pohl PS. Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res. 1995;105(1):163–74.

    Article  CAS  PubMed  Google Scholar 

  58. Wyke M. The effect of brain lesions in the performance of an arm-hand task. Neuropsychologia. 1967;6:125–34.

    Article  Google Scholar 

  59. Kawashima R, Yamada K, Kinomura S, et al. Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res. 1993;623(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  60. Kim SG, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 1993;261(5121):615–7.

    Article  CAS  PubMed  Google Scholar 

  61. Tanji J, Okano K, Sato KC. Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol. 1988;60(1):325–43.

    CAS  PubMed  Google Scholar 

  62. Schaefer SY, Haaland KY, Sainburg RL. Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res. 2009;1298:78–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.

    CAS  PubMed  Google Scholar 

  64. Haaland KY, Mutha PK, Rinehart JK, Daniels M, Cushnyr B, Adair JC. Relationship between arm usage and instrumental activities of daily living after unilateral stroke. Arch Phys Med Rehabil. 2012;93(11):1957–62.

    Article  PubMed  Google Scholar 

  65. Pandian S, Arya KN, Kumar D. Effect of motor training involving the less-affected side (MTLA) in post-stroke subjects: a pilot randomized controlled trial. Top Stroke Rehabil. 2015;22(5):357–67.

    Google Scholar 

  66. Wolf SL, Blanton S, Baer H, Breshears J, Butler AJ. Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist. 2002;8(6):325–38.

    PubMed  PubMed Central  Google Scholar 

  67. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  68. Wolf SL, Thompson PA, Morris DM, et al. The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair. 2005;19(3):194–205.

    Article  PubMed  Google Scholar 

  69. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.

    Article  CAS  PubMed  Google Scholar 

  70. Nozaki D, Kurtzer I, Scott S. Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci. 2006;9:3.

    Article  Google Scholar 

  71. Wang J, Sainburg RL. Generalization of visuomotor learning between bilateral and unilateral conditions. J Neurophysiol. 2009;102(5):2790–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43(5):631–42.

    Article  PubMed  Google Scholar 

  73. Jones RD, Donaldson IM, Parkin PJ. Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain. 1989;112(Pt 1):113–32.

    Article  PubMed  Google Scholar 

  74. Wang J, Sainburg RL. Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res. 2006;175(2):223–30.

    Article  PubMed  Google Scholar 

  75. Wang J, Sainburg RL. The symmetry of interlimb transfer depends on workspace locations. Exp Brain Res. 2006;170(4):464–71.

    Article  PubMed  Google Scholar 

  76. Wang J, Sainburg RL. Limitations in interlimb transfer of visuomotor rotations. Exp Brain Res. 2004;155(1):1–8.

    Article  PubMed  Google Scholar 

  77. Wang J, Sainburg RL. Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol. 2004;92(1):349–60.

    Article  PubMed  Google Scholar 

  78. Oujamaa L, Relave I, Froger J, Mottet D, Pelissier JY. Rehabilitation of arm function after stroke. Literature review. Ann Phys Rehabil Med. 2009;52(3):269–93.

    Article  CAS  PubMed  Google Scholar 

  79. Selles RW, Michielsen ME, Bussmann JB, et al. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training. Neurorehabil Neural Repair. 2014;28(7):652–9.

    Article  PubMed  Google Scholar 

  80. Stevens JA, Stoykov ME. Simulation of bilateral movement training through mirror reflection: a case report demonstrating an occupational therapy technique for hemiparesis. Top Stroke Rehabil. 2004;11(1):59–66.

    Article  PubMed  Google Scholar 

  81. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5 Pt 2):3208–24.

    CAS  PubMed  Google Scholar 

  82. Krakauer JW, Mazzoni P, Ghazizadeh A, Ravindran R, Shadmehr R. Generalization of motor learning depends on the history of prior action. PLoS Biol. 2006;4(10):e316.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mazzoni P, Krakauer JW. An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci. 2006;26(14):3642–5.

    Article  CAS  PubMed  Google Scholar 

  84. Sainburg RL, Ghez C, Kalakanis D. Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol. 1999;81(3):1045–56.

    CAS  PubMed  Google Scholar 

  85. Keisler A, Shadmehr R. A shared resource between declarative memory and motor memory. J Neurosci. 2010;30(44):14817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang VS, Haith A, Mazzoni P, Krakauer JW. Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron. 2011;70(4):787–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci. 2000;20(23):8916–24.

    CAS  PubMed  Google Scholar 

  88. Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci. 1999;2(11):1026–31.

    Article  CAS  PubMed  Google Scholar 

  89. Wolpert DH, Wolf DR. Estimating functions of probability distributions from a finite set of samples. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top. 1995;52(6):6841–54.

    CAS  Google Scholar 

  90. Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R. Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol. 2003;89(1):168–76.

    Article  PubMed  Google Scholar 

  91. Malfait N, Shiller DM, Ostry DJ. Transfer of motor learning across arm configurations. J Neurosci. 2002;22(22):9656–60.

    CAS  PubMed  Google Scholar 

  92. Conditt MA, Gandolfo F, Mussa-Ivaldi FA. The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol. 1997;78(1):554–60.

    CAS  PubMed  Google Scholar 

  93. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–9.

    Article  CAS  PubMed  Google Scholar 

  94. Bastian AJ, Thach WT. Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann Neurol. 1995;38(6):881–92.

    Article  CAS  PubMed  Google Scholar 

  95. Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.

    Article  PubMed  Google Scholar 

  96. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol. 2007;98(1):54–62.

    Article  PubMed  Google Scholar 

  97. Tanaka H, Sejnowski TJ, Krakauer JW. Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. J Neurophysiol. 2009;102(5):2921–32.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol. 2011;21(4):636–44.

    Article  CAS  PubMed  Google Scholar 

  99. Reis J, Schambra HM, Cohen LG, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol. 2011;7(3):e1002012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taylor JA, Klemfuss NM, Ivry RB. An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum. 2010;9(4):580–6.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Taylor JA, Krakauer JW, Ivry RB. Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci. 2014;34(8):3023–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sainburg PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Sainburg, R.L., Mutha, P.K. (2016). Movement Neuroscience Foundations of Neurorehabilitation. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics