Skip to main content

Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury

  • Chapter
  • First Online:

Abstract

The implementation of electromechanical devices for the quantification and treatment of movement impairments (abnormal muscle synergies, spasticity, and paralysis) resulting from brain injury is the main topic in this chapter. The specific requirements for the use of robotic devices to quantify these impairments as well as treat them effectively are discussed. A case is made that electromechanical devices not only allow the clinician to quantitatively control task practice and dosage, but, more importantly, allow for direct targeting of specific impairments, such as the loss of independent joint control (Dewald et al. Top Stroke Rehabil. 8(1):1–12, 2001), that are informed by a body of scientific evidence. Acceptance of these new technologies is dependent on proof of their effectiveness in the reduction of movement impairments and activity limitations, as opposed to compensation, and ultimately on carryover of benefits to activities of daily living and quality of life. Furthermore, the need of a concerted effort to simplify these new technologies, once essential treatment ingredients have been determined, is seen as being a key component for their acceptance in the clinic on a large scale. Finally, it is crucial that we demonstrate that electromechanical technologies augment existing rehabilitative care and serve to reduce treatment time and costs while maintaining, and even improving, functional outcomes. This is a requirement for future technology development especially in a healthcare environment where rehabilitation services have become less accessible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dewald JP, Sheshadri V, Dawson ML, Beer RF. Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil. 2001;8(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.

    Article  PubMed  Google Scholar 

  3. Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Stroke. 2009;40:e392–3.

    Article  Google Scholar 

  4. Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171–84.

    Article  PubMed  Google Scholar 

  5. Brokaw EB, Nichols D, Holley RJ, Lum PS. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil Neural Repair. 2014;28(4):367–76.

    Article  PubMed  Google Scholar 

  6. Ellis MD, Sukal-Moulton TM, Dewald JP. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009;25(3):549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    Article  PubMed  Google Scholar 

  8. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  CAS  PubMed  Google Scholar 

  9. Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, et al. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 2013;10:112.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sukal TM, Ellis MD, Dewald JP. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res. 2007;183(2):215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brokaw EB, Murray T, Nef T, Lum PS. Retraining of interjoint arm coordination after stroke using robot-assisted time-independent functional training. J Rehabil Res Dev. 2011;48(4):299–316.

    Article  PubMed  Google Scholar 

  13. Ellis MD, Sukal T, DeMott T, Dewald JP. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miller LC, Dewald JP. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol. 2012;123(6):1216–25.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koo TK, Mak AF, Hung L, Dewald JP. Joint position dependence of weakness during maximum isometric voluntary contractions in subjects with hemiparesis. Arch Phys Med Rehabil. 2003;84(9):1380–6.

    Article  PubMed  Google Scholar 

  16. Beer RF, Ellis MD, Holubar BG, Dewald JP. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve. 2007;36(2):242–50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Burne JA, Carleton VL, O’Dwyer NJ. The spasticity paradox: movement disorder or disorder of resting limbs? J Neurol Neurosurg Psychiatry. 2005;76(1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmit BD. Mechanical measures of spasticity in stroke. Top Stroke Rehabil. 2001;8(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  19. Schmit BD, Dhaher Y, Dewald JP, Rymer WZ. Reflex torque response to movement of the spastic elbow: theoretical analyses and implications for quantification of spasticity. Ann Biomed Eng. 1999;27(6):815–29.

    Article  CAS  PubMed  Google Scholar 

  20. Schmit BD, Dewald JP, Rymer WZ. Stretch reflex adaptation in elbow flexors during repeated passive movements in unilateral brain-injured patients. Arch Phys Med Rehabil. 2000;81(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  21. Powers RK, Marder-Meyer J, Rymer WZ. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol. 1988;23(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  22. Powers RK, Campbell DL, Rymer WZ. Stretch reflex dynamics in spastic elbow flexor muscles. Ann Neurol. 1989;25(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  23. Trumbower RD, Ravichandran VJ, Krutky MA, Perreault EJ. Contributions of altered stretch reflex coordination to arm impairments following stroke. J Neurophysiol. 2010;104(6):3612–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Vlugt E, de Groot JH, Schenkeveld KE, Arendzen JH, van der Helm FC, Meskers CG. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil. 2010;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meskers CG, Schouten AC, de Groot JH, de Vlugt E, van Hilten BJ, van der Helm FC, et al. Muscle weakness and lack of reflex gain adaptation predominate during post-stroke posture control of the wrist. J Neuroeng Rehabil. 2009;6:29.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brunnstrom S. Movement therapy in hemiplegia: a neurophysiological approach. 1st ed. New York: Medical Department, Harper & Row; 1970, 192 p.

    Google Scholar 

  27. Foester O. Motorische Felder und Bahnen. In: Bumke O, Foester O, editors. Handbuch der Neurologie. Berlin: Springer; 1933.

    Google Scholar 

  28. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74(4):443–80.

    Article  CAS  PubMed  Google Scholar 

  29. Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995;118(Pt 2):495–510.

    Article  PubMed  Google Scholar 

  30. Beer R, Dewald J. Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil. 1999;80(7):766–72.

    Article  CAS  PubMed  Google Scholar 

  31. Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  32. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.

    CAS  PubMed  Google Scholar 

  33. Beer RF, Dewald JP, Dawson ML, Rymer WZ. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp Brain Res. 2004;156(4):458–70.

    Article  PubMed  Google Scholar 

  34. Beer RF, Dewald JP, Rymer WZ. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res. 2000;131(3):305–19.

    Article  CAS  PubMed  Google Scholar 

  35. Colebatch JG, Gandevia SC. The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain. 1989;112(Pt 3):749–63.

    Article  PubMed  Google Scholar 

  36. Lang CE, Wagner JM, Edwards DF, Sahrmann SA, Dromerick AW. Recovery of grasp versus reach in people with hemiparesis poststroke. Neurorehabil Neural Repair. 2006;20(4):444–54.

    Article  PubMed  Google Scholar 

  37. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101(4):316–28.

    Article  CAS  PubMed  Google Scholar 

  38. Miller LC, Ruiz-Torres R, Stienen AH, Dewald JP. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE Trans Biomed Eng. 2009;56(9):2312–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture. Neurology. 1980;30(12):1303–13.

    Article  CAS  PubMed  Google Scholar 

  40. Ada L, Vattanasilp W, O’Dwyer NJ, Crosbie J. Does spasticity contribute to walking dysfunction after stroke? J Neurol Neurosurg Psychiatry. 1998;64(5):628–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ibrahim IK, Berger W, Trippel M, Dietz V. Stretch-induced electromyographic activity and torque in spastic elbow muscles. Differential modulation of reflex activity in passive and active motor tasks. Brain. 1993;116(Pt 4):971–89.

    Article  PubMed  Google Scholar 

  42. Meyer M, Adorjani C. Tonic stretch reflex for quantification of pathological muscle tone. In: Feldman RG YR, Koella WP, CIBA-GEIGY Corporation, editors. Spasticity: disordered motor control, vol. xviii. Chicago: Year Book Medical Publishers; 1980. p. 310–30. Miami, FL.

    Google Scholar 

  43. Meyer M, Adorjani C. Quantification of the effects of muscle relaxant drugs in man by tonic stretch reflex. Adv Neurol. 1983;39:997–1011.

    CAS  PubMed  Google Scholar 

  44. Neilson PD. Interaction between voluntary contraction and tonic stretch reflex transmission in normal and spastic patients. J Neurol Neurosurg Psychiatry. 1972;35(6):853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown TI, Rack PM, Ross HF. Electromyographic responses to imposed sinusoidal movement of the human thumb. J Physiol. 1982;332:87–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeo W, Ada L, O’Dwyer NJ, Neilson PD. Tonic stretch reflexes in older able-bodied people. Electromyogr Clin Neurophysiol. 1998;38(5):273–8.

    CAS  PubMed  Google Scholar 

  47. Gottlieb GL, Agarwal GC. Dependence of human ankle compliance on joint angle. J Biomech. 1978;11(4):177–81.

    Article  CAS  PubMed  Google Scholar 

  48. Dietz V, Trippel M, Berger W. Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Ann Neurol. 1991;30(6):767–79.

    Article  CAS  PubMed  Google Scholar 

  49. Lee WA, Boughton A, Rymer WZ. Absence of stretch reflex gain enhancement in voluntarily activated spastic muscle. Exp Neurol. 1987;98(2):317–35.

    Article  CAS  PubMed  Google Scholar 

  50. Sinkjaer T, Toft E, Larsen K, Andreassen S, Hansen HJ. Non-reflex and reflex mediated ankle joint stiffness in multiple sclerosis patients with spasticity. Muscle Nerve. 1993;16(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  51. McPherson JG, Stienen AH, Drogos JM, Dewald JP. The relationship between the flexion synergy and stretch reflexes in individuals with chronic hemiparetic stroke. IEEE Int Conf Rehabil Robot. 2011;2011:5975516.

    PubMed  Google Scholar 

  52. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.

    Article  CAS  PubMed  Google Scholar 

  53. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18:833–62.

    Article  PubMed  Google Scholar 

  54. Bonifer NM, Anderson KM, Arciniegas DB. Constraint-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor ability. Arch Phys Med Rehabil. 2005;86(9):1867–73.

    Article  PubMed  Google Scholar 

  55. Oujamaa L, Relave I, Froger J, Mottet D, Pelissier JY. Rehabilitation of arm function after stroke. Literature review. Ann Phys Rehabil Med. 2009;52(3):269–93.

    Article  CAS  PubMed  Google Scholar 

  56. Ellis MD, Holubar BG, Acosta AM, Beer RF, Dewald JP. Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle Nerve. 2005;32(2):170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ellis MD, Sukal-Moulton T, Dewald JP. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009;23(8):862–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Burgar CG, Lum PS, Shor PC, Machiel Van der Loos HF. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37(6):663–73.

    CAS  PubMed  Google Scholar 

  59. Fazekas G, Horvath M, Toth A. A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis. Int J Rehabil Res. 2006;29(3):251–4.

    Article  PubMed  Google Scholar 

  60. Frisoli A, Borelli L, Montagner A, Marcheschi S, Procopio C, Salsedo F, et al., editors. Arm rehabilitation with a robotic exoskeleton in virtual reality. IEEE 10th International Conference on Rehabilitation Robotics, 2007 ICORR 2007. Noordwijk, Netherlands; 2007.

    Google Scholar 

  61. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84(6):915–20.

    Article  PubMed  Google Scholar 

  62. Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C. Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care. 1999;7(6):419–23.

    CAS  PubMed  Google Scholar 

  63. Masiero S, Celia A, Armani M, Rosati G. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res. 2006;18(6):531–5.

    Article  PubMed  Google Scholar 

  64. Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45(9):887–900.

    Article  PubMed  Google Scholar 

  65. Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Devel. 2000;37(6):653–62.

    CAS  Google Scholar 

  66. Kitago T, Marshall RS. Strategies for early stroke recovery: what lies ahead? Curr Treat Options Cardiovasc Med. 2015;17(1):356.

    Article  PubMed  Google Scholar 

  67. Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis. 2008;26(3):289–96.

    Article  PubMed  Google Scholar 

  68. Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG. Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top Stroke Rehabil. 2007;14(1):1–12.

    Article  PubMed  Google Scholar 

  69. Holden MK, Dyar TA, Dayan-Cimadoro L. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):36–42.

    Article  PubMed  Google Scholar 

  70. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    Article  PubMed  Google Scholar 

  71. Kuttuva M, Boian R, Merians A, Burdea G, Bouzit M, Lewis J, et al. The Rutgers Arm, a rehabilitation system in virtual reality: a pilot study. Cyberpsychol Behav. 2006;9(2):148–51.

    Article  PubMed  Google Scholar 

  72. Nef T, Quinter G, Muller R, Riener R. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Neurodegener Dis. 2009;6(5–6):240–51.

    Article  PubMed  Google Scholar 

  73. Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC. Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans Neural Syst Rehabil Eng. 2002;10(2):102–8.

    Article  PubMed  Google Scholar 

  74. Sivak M, Mavroidis C, Holden MK. Design of a low cost multiple user virtual environment for rehabilitation (MUVER) of patients with stroke. Stud Health Technol Inform. 2009;142:319–24.

    PubMed  Google Scholar 

  75. Stewart JC, Yeh SC, Jung Y, Yoon H, Whitford M, Chen SY, et al. Intervention to enhance skilled arm and hand movements after stroke: a feasibility study using a new virtual reality system. J Neuroeng Rehabil. 2007;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  76. van der Kooij H, Prange GB, Krabben T, Renzenbrink GJ, de Boer J, Hermens HJ, et al. Preliminary results of training with gravity compensation of the arm in chronic stroke survivors. Conf Proc IEEE Eng Med Biol Soc. 2009;1:2426–9.

    Google Scholar 

  77. Broeren J, Rydmark M, Sunnerhagen KS. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study. Arch Phys Med Rehabil. 2004;85(8):1247–50.

    Article  PubMed  Google Scholar 

  78. van Peppen RP, Hendriks HJ, van Meeteren NL, Helders PJ, Kwakkel G. The development of a clinical practice stroke guideline for physiotherapists in The Netherlands: a systematic review of available evidence. Disabil Rehabil. 2007;29(10):767–83.

    Article  PubMed  Google Scholar 

  79. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Woldag H, Hummelsheim H. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol. 2002;249(5):518–28.

    Article  PubMed  Google Scholar 

  81. Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, et al., editors. A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. Engineering in Medicine and Biology Society, 2004 IEMBS ‘04 26th Annual International Conference of the IEEE; 2004.

    Google Scholar 

  82. Merians AS, Poizner H, Boian R, Burdea G, Adamovich S. Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair. 2006;20(2):252–67.

    Article  PubMed  Google Scholar 

  83. Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41(12):1016–102.

    Article  PubMed  Google Scholar 

  84. Frisoli A, Bergamasco M, Carboncini MC, Rossi B. Robotic assisted rehabilitation in virtual reality with the L-EXOS. Stud Health Technol Inform. 2009;145:40–54.

    PubMed  Google Scholar 

  85. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    Article  CAS  PubMed  Google Scholar 

  86. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    Article  PubMed  Google Scholar 

  88. Macclellan LR, Bradham DD, Whitall J, Volpe B, Wilson PD, Ohlhoff J, et al. Robotic upper-limb neurorehabilitation in chronic stroke patients. J Rehabil Res Dev. 2005;42(6):717–22.

    Article  PubMed  Google Scholar 

  89. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Housman S, Le V, Rahman T, Sanchez R, Reinkensmeyer D, editors. Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. Noordwijk, Netherlands; 2007.

    Google Scholar 

  91. Yao J, Chen A, Carmona C, Dewald JP. Cortical overlap of joint representations contributes to the loss of independent joint control following stroke. Neuroimage. 2009;45(2):490–9.

    Article  PubMed  Google Scholar 

  92. Muratori LM, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther. 2013;26(2):94–102, quiz 3.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14(2):52–61.

    Article  PubMed  Google Scholar 

  94. Lucca LF. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med. 2009;41(12):1003–100.

    Article  PubMed  Google Scholar 

  95. Mumford N, Wilson PH. Virtual reality in acquired brain injury upper limb rehabilitation: evidence-based evaluation of clinical research. Brain Inj. 2009;23(3):179–91.

    Article  PubMed  Google Scholar 

  96. Acosta AM, Dewald HA, Dewald JP. Pilot study to test effectiveness of video game on reaching performance in stroke. J Rehabil Res Dev. 2011;48(4):431–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules P. A. Dewald PT, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Dewald, J.P.A., Ellis, M.D., Acosta, A.M., McPherson, J.G., Stienen, A.H.A. (2016). Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics