Skip to main content

Clinical Aspects for the Application of Robotics in Locomotor Neurorehabilitation

  • Chapter
  • First Online:
Book cover Neurorehabilitation Technology

Abstract

In patients suffering from a movement disorder after a damage of the central nervous system, improvement in walking or hand function can be achieved by providing functional training. After a stroke or a spinal cord injury (SCI), neuronal centers at and below the level of lesion exhibit plasticity that can be exploited by functional training paradigms that include assisting stepping or hand/arm movements of the affected side. Training of locomotor function, the focus of this chapter, requires body-weight support (BWS), while the subjects stand on a moving treadmill. In these individuals, human spinal locomotor centers become activated if an appropriate afferent input is provided. The stroke/SCI subjects benefit from such locomotor training that enables them to walk over ground. Load- and hip joint-related afferent input seems to be of crucial importance for the generation of a locomotor pattern and, consequently, the effectiveness of the locomotor training. In severely affected stroke/SCI subjects, rehabilitation robots enable longer, i.e., more intensive training. In addition, they also offer the ability to standardize training approaches and to obtain objective feedback within training sessions allowing to monitor functional improvements over time. This chapter provides an overview of the clinical aspects for the successful application of robotic devices in the neurorehabilitation of stroke/SCI subjects. First, background information is given for the neural mechanisms of gait recovery after stroke/SCI. Second, the afferent input required for an effective training is discussed and, third, findings from clinical studies are presented covering the feasibility and efficacy of robot-assisted locomotor training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dietz V. Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull. 2008;76(5):459–63.

    Article  CAS  PubMed  Google Scholar 

  2. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  3. Kelly-Hayes M, Robertson JT, Broderick JP, Duncan PW, Hershey LA, et al. The American Heart Association stroke outcome classification: executive summary. Circulation. 1998;97(24):2474–8.

    Article  CAS  PubMed  Google Scholar 

  4. Waters RL, Adkins R, Yakura J, Sie I. Donal Munro lecture: functional and neurologic recovery following acute SCI. J Spinal Cord Med. 1998;21(3):195–9.

    Article  CAS  PubMed  Google Scholar 

  5. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  6. Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):387–400.

    Article  PubMed  Google Scholar 

  7. Bussel B, Roby-Brami A, Azouvi P, Biraben A, Yakovleff A, et al. Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generator. Brain. 1988;111(Pt 5):1235–45.

    Article  PubMed  Google Scholar 

  8. Martino G. How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol. 2004;3(6):372–8.

    Article  CAS  PubMed  Google Scholar 

  9. Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987;25(3):341–4.

    Article  CAS  PubMed  Google Scholar 

  10. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–82.

    Article  CAS  PubMed  Google Scholar 

  11. Hesse S, Werner C. Partial body weight supported treadmill training for gait recovery following stroke. Adv Neurol. 2003;92:423–8.

    PubMed  Google Scholar 

  12. Teasell RW, Bhogal SK, Foley NC, Speechley MR. Gait retraining post stroke. Top Stroke Rehabil. 2003;10(2):34–65.

    Article  PubMed  Google Scholar 

  13. Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30(4):229–38.

    Article  CAS  PubMed  Google Scholar 

  14. Wernig A, Nanassy A, Muller S. Laufband (treadmill) therapy in incomplete paraplegia and tetraplegia. J Neurotrauma. 1999;16(8):719–26.

    Article  CAS  PubMed  Google Scholar 

  15. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    CAS  PubMed  Google Scholar 

  16. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–8.

    CAS  PubMed  Google Scholar 

  17. Riener R, Lünenburger L, Maier IC, Colombo G, Dietz V. Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat. J Healthc Eng. 2010;1(2):197–216.

    Article  Google Scholar 

  18. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137:654.

    Article  PubMed  Google Scholar 

  19. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, et al. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  20. Pearson KG. Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol. 2000;62:723–53.

    Article  CAS  PubMed  Google Scholar 

  21. Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92:421–35.

    Article  CAS  PubMed  Google Scholar 

  22. Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cats. Brain Res. 1990;514:206–18.

    Article  CAS  PubMed  Google Scholar 

  23. Barbeau H, Rossignol S. Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol. 1994;7(6):517–24.

    Article  CAS  PubMed  Google Scholar 

  24. Skinner RD, Houle JD, Reese NB, Berry CL, Garcia-Rill E. Effects of exercise and fetal spinal cord implants on the H-reflex in chronically spinalized adult rats. Brain Res. 1996;729:127–31.

    Article  CAS  PubMed  Google Scholar 

  25. Vilensky J, O’Connor B. Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann NY Acad Sci. 1998;860:528–30. Neuronal Mechanisms for Generating Locomotor Activity.

    Article  CAS  PubMed  Google Scholar 

  26. Beauparlant J, van den Brand R, Barraud Q, Friedli L, Musienko P, et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain. 2013;136(Pt 11):3347–61 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  27. Hubli M, Bolliger M, Limacher E, Luft AR, Dietz V. Spinal neuronal dysfunction after stroke. Exp Neurol. 2012;234(1):153–60 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  28. Dietz V. Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol. 2010;6(3):167–74.

    Article  PubMed  Google Scholar 

  29. Curt A, Dietz V. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil. 1997;78(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  30. Curt A, Keck ME, Dietz V. Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch Phys Med Rehabil. 1998;79(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  31. Curt A, Dietz V. Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord. 1999;37(3):157–65 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  32. Basso DM. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys Ther. 2000;80(8):808–17 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    CAS  PubMed  Google Scholar 

  33. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, et al. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  34. de Leon RD, Hodgson JA, Roy RR, Edgerton VR. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998;79(3):1329–40 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  35. de Leon RD, Hodgson JA, Roy RR, Edgerton VR. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol. 1998;80(1):83–91.

    PubMed  Google Scholar 

  36. Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry. 2001;71(1):93–6 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dietz V. Do human bipeds use quadrupedal coordination? Trends Neurosci. 2002;25(9):462–7.

    Article  PubMed  Google Scholar 

  38. Fossberg H. Preface. In: Fossberg H, Hirschfeld H, editors. Movement disorders in children: medicine and sport science. Basel: Karger; 1992. p. 7–8.

    Google Scholar 

  39. Kuhn RA. Functional capacity of the isolated human spinal cord. Brain. 1950;73(1):1–51.

    Article  CAS  PubMed  Google Scholar 

  40. Dietz V. Proprioception and locomotor disorders. Nat Rev Neurosci. 2002;3(10):781–90 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  41. Calancie B, Needham-Shropshire B, Jacobs P, Willer K, Zych G, et al. Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain. 1994;117(Pt 5):1143–59.

    Article  PubMed  Google Scholar 

  42. Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Curr Opin Neurol. 2008;21(1):76–82.

    Article  PubMed  Google Scholar 

  43. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96(5):1954–60.

    Article  CAS  PubMed  Google Scholar 

  44. Curt A, Dietz V. Traumatic cervical spinal cord injury: relation between somatosensory evoked potentials, neurological deficit, and hand function. Arch Phys Med Rehabil. 1996;77(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  45. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994;344(8932):1260–3 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  46. Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009;132(Pt 8):2196–205.

    Article  CAS  PubMed  Google Scholar 

  47. Dobkin BH, Harkema S, Requejo P, Edgerton VR. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil. 1995;9(4):183–90.

    CAS  PubMed  Google Scholar 

  48. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    Article  PubMed  Google Scholar 

  49. Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002;125(Pt 12):2626–34 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  50. Ibrahim IK, Berger W, Trippel M, Dietz V. Stretch-induced electromyographic activity and torque in spastic elbow muscles. Differential modulation of reflex activity in passive and active motor tasks. Brain. 1993;116(Pt 4):971–89 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  51. Dietz V, Quintern J, Berger W. Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain. 1981;104(3):431–49 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  52. Kloter E, Wirz M, Dietz V. Locomotion in stroke subjects: interactions between unaffected and affected sides. Brain. 2011;134(Pt 3):721–31 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  53. O’Dwyer NJ, Ada L. Reflex hyperexcitability and muscle contracture in relation to spastic hypertonia. Curr Opin Neurol. 1996;9(6):451–5 [Review].

    Article  PubMed  Google Scholar 

  54. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, et al. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol. 1997;77(2):797–811.

    CAS  PubMed  Google Scholar 

  55. Pearson KG, Collins DF. Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol. 1993;70(3):1009–17.

    CAS  PubMed  Google Scholar 

  56. Dietz V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev. 1992;72(1):33–69 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  57. Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.

    Article  PubMed  Google Scholar 

  58. Katoh S, el Masry WS. Neurological recovery after conservative treatment of cervical cord injuries. J Bone Joint Surg. 1994;76(2):225–8.

    CAS  Google Scholar 

  59. Grillner S, Rossignol S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 1978;146(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  60. Ditunno Jr JF, Ditunno PL, Graziani V, Scivoletto G, Bernardi M, et al. Walking index for spinal cord injury (WISCI): an international multicenter validity and reliability study. Spinal Cord: Off J Int Med Soc Paraplegia. 2000;38(4):234–43 [Clinical Trial Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  Google Scholar 

  61. Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87(9):1218–22 [Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  62. Maegele M, Muller S, Wernig A, Edgerton VR, Harkema SJ. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma. 2002;19(10):1217–29.

    Article  CAS  PubMed  Google Scholar 

  63. Wirz M, Dietz V. Recovery of sensorimotor function and activities of daily living after cervical spinal cord injury: the influence of Age. J Neurotrauma. 2014;21.

    Google Scholar 

  64. Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–65.

    Article  PubMed  Google Scholar 

  65. Dietz V. Locomotor training in paraplegic patients. Ann Neurol. 1995;38(6):965.

    Article  CAS  PubMed  Google Scholar 

  66. Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122–8.

    Article  CAS  PubMed  Google Scholar 

  67. Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair. 2007;21(1):25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev (Online). 2003(3):CD002840.

    Google Scholar 

  69. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–36 [Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morrison SA, Backus D. Locomotor training: is translating evidence into practice financially feasible? J Neurol Phys Ther. 2007;31(2):50–4.

    Article  PubMed  Google Scholar 

  71. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  72. Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez R, et al. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch Phys Med Rehabil. 2012;93(3):404–12 [Randomized Controlled Trial].

    Article  PubMed  Google Scholar 

  73. Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–94.

    Article  PubMed  Google Scholar 

  74. Everaert DG, Thompson AK, Chong SL, Stein RB. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair. 2010;24(2):168–77 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  75. Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, et al. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler. 2008;14(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  76. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, et al. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46:125.

    CAS  PubMed  Google Scholar 

  77. Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, et al. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord. 2008;23(2):280–3.

    Article  PubMed  Google Scholar 

  78. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14:496.

    Article  PubMed  Google Scholar 

  79. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    Article  PubMed  Google Scholar 

  80. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, et al. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  81. Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.

    PubMed  Google Scholar 

  82. Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–54.

    Article  PubMed  Google Scholar 

  83. Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair. 2008;22(6):661–71.

    Article  PubMed  Google Scholar 

  84. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.

    Article  PubMed  Google Scholar 

  85. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schafer J, Sennhauser FH, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94(8):615–20.

    Article  CAS  PubMed  Google Scholar 

  86. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49(12):900–6.

    Article  CAS  PubMed  Google Scholar 

  87. Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM & R. 2009;1(6):516–23.

    Article  Google Scholar 

  88. Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dietz V. Good clinical practice in neurorehabilitation. Lancet Neurol. 2006;5(5):377–8.

    Article  PubMed  Google Scholar 

  90. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;(7):CD006185 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].

    Google Scholar 

  91. Winchester P, McColl R, Querry R, Foreman N, Mosby J, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19(4):313–24 [Clinical Trial, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  92. Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil. 2009;6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mirbagheri MM, Tsao C, Pelosin E, Rymer WZ. Therapeutic effects of robotic-assisted locomotor training on neuromuscular properties. Proceedings of the 2005 IEEE 9th international conference on rehabilitation robotics 2005.

    Google Scholar 

  94. Sherman MF, Lam T, Sheel AW. Locomotor-respiratory synchronization after body weight supported treadmill training in incomplete tetraplegia: a case report. Spinal Cord. 2009;47(12):896–8.

    Article  CAS  PubMed  Google Scholar 

  95. Hunt KJ, Jack A, Pennycott A, Perret C, Baumberger TH, et al. Control of work rate-driven exercise facilitates cardiopulmonary training and assessment during robot-assisted gait in complete spinal cord injury. Biomed Signal Process Control. 2008;3(1):19–28.

    Article  Google Scholar 

  96. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86(11):1466–78.

    Article  PubMed  Google Scholar 

  97. Blicher JU, Nielsen JF. Cortical and spinal excitability changes after robotic gait training in healthy participants. Neurorehabil Neural Repair. 2009;23(2):143–9.

    Article  PubMed  Google Scholar 

  98. Kamibayashi K, Nakajima T, Takahashi M, Akai M, Nakazawa K. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans. Eur J Neurosci. 2009;30(1):100–9.

    Article  PubMed  Google Scholar 

  99. Querry RG, Pacheco F, Annaswamy T, Goetz L, Winchester PK, et al. Synchronous stimulation and monitoring of soleus H reflex during robotic body weight-supported ambulation in subjects with spinal cord injury. J Rehabil Res Dev. 2008;45(1):175–86.

    Article  PubMed  Google Scholar 

  100. Dietz V, Muller R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain. 2004;127(Pt 10):2221–31 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  101. Magagnin V, Caiani EG, Fusini L, Turiel M, Licari V, et al. Assessment of the cardiovascular regulation during robotic assisted locomotion in normal subjects: autoregressive spectral analysis vs empirical mode decomposition. Conference proceedings of IEEE engineering in medicine and biology society. 2008;2008:3844–7.

    Google Scholar 

  102. Magagnin V, Porta A, Fusini L, Licari V, Bo I, et al. Evaluation of the autonomic response in healthy subjects during treadmill training with assistance of a robot-driven gait orthosis. Gait Posture. 2009;29(3):504–8.

    Article  PubMed  Google Scholar 

  103. Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354(9174):191–6.

    Article  CAS  PubMed  Google Scholar 

  104. Nash MS, Jacobs PL, Johnson BM, Field-Fote E. Metabolic and cardiac responses to robotic-assisted locomotion in motor-complete tetraplegia: a case report. J Spinal Cord Med. 2004;27(1):78–82.

    PubMed  Google Scholar 

  105. White HSF, Hayes S, White M. The effect of using a powered exoskeleton technology training program on joint range of motion on spinal cord injured individuals: a pilot study. Int J Phys Ther Rehab. 2014;1(102):1–5.

    Google Scholar 

  106. Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, et al. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89(8):829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gonzenbach RR, Gasser P, Zorner B, Hochreutener E, Dietz V, et al. Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats. Ann Neurol. 2010;68(1):48–57.

    Article  PubMed  Google Scholar 

  108. Schwab ME. Regeneration of lesioned CNS axons by neutralisation of neurite growth inhibitors: a short review. Paraplegia. 1991;29(5):294–8. [Research Support, Non-U.S. Gov’t Review.

    Article  CAS  PubMed  Google Scholar 

  109. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76(2):319–70.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Centre of Competence in Research (NCCR) of the Swiss National Science Foundation (SNF) on Neural Plasticity and Repair and the EU Projects MIMICS and Spinal Cord Repair funded by the European Community’s Seventh Framework Program (FP7/2007–2013).

Disclosure

There exist long-term scientific collaborations and research partnerships between the University Hospital Balgrist and the Hocoma Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Dietz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Dietz, V. (2016). Clinical Aspects for the Application of Robotics in Locomotor Neurorehabilitation. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics