Skip to main content

The Urban Heat Island Effect in Dutch City Centres: Identifying Relevant Indicators and First Explorations

  • Chapter
  • First Online:
  • 1337 Accesses

Part of the book series: Climate Change Management ((CCM))

Abstract

In the Netherlands awareness regarding the Urban Heat Island (UHI) was raised relatively recently. Because of this recent understanding, there is a lack of consistent urban micro-meteorological measurements to allow a conventional UHI assessment of Dutch cities during heat waves. This paper argues that it is possible to retrieve relevant UHI information—including adaptation guidelines—from satellite imagery.

The paper comprises three parts. The first part consists of a study of suited indicators to identify urban heat islands from which a method is presented based on ground heat flux mapping. The second part proposes heat mitigation strategies and identifies the areas where these strategies could be applied within the hotspots identified in the cities of The Hague, Delft, Leiden, Gouda, Utrecht and Den Bosch. The third part estimates the reduction of urban heat generated by the increase of roof albedo in the hotspots of the six cities. The six cities hotspots are located within the boundaries of the seventeenth century city centres. In order to avoid interference with cultural values of these historical environments most likely UHI mitigation measures regard improving the thermal behaviour of the city roofs. For instance, applying white coatings on bitumen flat roofs (or replacing them by white single-ply membranes) and replacing sloped roof clay tiles by coloured tiles with cool pigments can reduce the urban heat hotspots by approximately 1.5 °C.

Remote sensing provides high level information that provide urban planners and policy makers with overall design guidelines for the reduction of urban heat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asaeda T, Ca TV, Wake A (1993) Heating of paved grounds and its effect on the near surface atmosphere: exchange processes at the land surface for a range of space and time scales. In: Proceedings Yokohama Symposium, July 1993. IAHS Publ. 212, International Association of Hydrological Sciences, pp 181–187

    Google Scholar 

  • Asrar G (1989) Theory and applications of optical remote sensing. Wiley Series in Remote Sensing and Image Processing. Wiley, New York, NY

    Google Scholar 

  • Baudouin Y, Lefebvre S (2014) Urban heat island mitigation measures and regulations in Montréal and Toronto. Canada Mortgage and Housing Corporation

    Google Scholar 

  • Bechtel B (2011) Multitemporal Landsat data for urban heat island assessment and classification of local climate zones. Urban Remote Sensing Event (JURSE)

    Google Scholar 

  • Blankenstein S, Kuttler W (2004) Impact of street geometry on downward longwave radiation and air temperature in an urban environment. Meteorol Z 15:373–379

    Article  Google Scholar 

  • Brandsma T, Wolters D (2012) Measurement and statistical modeling of the urban heat island of the city of Utrecht, the Netherlands. J Clim Appl Meteorol 51:1046–1060

    Article  Google Scholar 

  • Cao L, Li P, Zhang L, Chen T (2008) Remote sensing image-based analysis of the relationship between urban heat island and vegetation fraction. The international Archives of Photogrammetry, remote sensing and spatial information sciences, vol XXXVII, part B7

    Google Scholar 

  • Carlson TN, Dodd JK, Benjamin SG, Cooper JN (1981) Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J Appl Meteorol 20:67–87

    Article  Google Scholar 

  • Carlson TN, Gillies RR, Perry EM (1994) A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Rem Sens Rev 9:161–173

    Article  Google Scholar 

  • Carlson TN, Capehart WJ, Gillies RR (1995) A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens Environ 54:161–167

    Article  Google Scholar 

  • Choudhury BJ, Ahmed NU, Idso SB, Reginato RJ, Daughtry CST (1994) Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens Environ 50:1–17

    Article  Google Scholar 

  • Climate adaptation for rural areas. http://www.knowledgeforclimate.nl/ruralareas/researchthemeruralareas/consortiumclimateadaptationforruralareas. Accessed Jun 2015

  • Climate Proof Cities (CPC). http://knowledgeforclimate.climateresearchnetherlands.nl/climateproofcities/background-information. Accessed Jan 2014

  • Coll C, Galve JM, Sánchez JM, Caselles V (2010) Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans Geosci Rem Sens 48(1):547–555

    Article  Google Scholar 

  • De Groot–Reichwein MAM, Van Lammeren RJA, Goosen H, Koekoek A, Bregt AK, Vellinga P (2014) Urban heat indicator map for climate adaptation planning. Mitig Adapt Strat Glob Chang. doi:10.1007/s11027-015-9669-5

    Google Scholar 

  • Doll D, Ching JKS, Kaneshiro J (1985) Parametrization of subsurface heating for soil and concrete using net radiation data. Bound-Lay Meteorol 10:351–372

    Article  Google Scholar 

  • Dousset B, Gourmelon F, Laaidi K, Zeghnoun A, Giraudet E, Bretin P, Mauri E, Vandentorren S (2011) Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol 31:313–323

    Article  Google Scholar 

  • Exelisvis (2015) https://www.exelisvis.com/

  • Gallo KP, McNab AL, Karl TR, Brown JF, Hood JJ, Tarpley JD (1993) The use of NOAA AVHRR data for assessment of the urban heat island effect. J Appl Meteorol 32(5):899–908

    Article  Google Scholar 

  • Garssen J, Harmsen C, de Beer J (2005) The effect of the summer 2003 heat wave on mortality in the Netherlands. Euro Surveill 10(7):165–167

    Google Scholar 

  • Heusinkveld BG, van Hove LWA, Jacobs CMJ, Steeneveld GJ, Elbers JA, Moors EJ, Holtslag AAM (2010) Use of a mobile platform for assessing urban heat stress in Rotterdam. Wageningen UR, Wageningen

    Google Scholar 

  • Hoeven FD, Wandl A (2013) Amsterwarm: Gebiedstypologie warmte-eiland Amsterdam. TU Delft, Faculty of Architecture, Delft

    Google Scholar 

  • Hove LWA, Steeneveld GJ, Jacobs CMJ, Heusinkveld BG, Elbers JA, Moors EJ, Holtslag AAM (2011) Exploring the urban heat island intensity of Dutch cities. Alterra report 2170. Wageningen, Netherlands

    Google Scholar 

  • Klok L, Broeke HT, Harmelen TV, Verhagen H, Kok H, Zwart S (2010) Ruimtelijke verdeling en mogelijke oorzaken van het hitte-eiland effect. TNO Bouw en Ondergrond, Utrecht

    Google Scholar 

  • KNMI (Koninklijk Nederlands Meteorologisch Instituut) (2006) 2050 climate scenarios. KNMI, De Bilt. http://www.knmi.nl/climatescenarios/#Inhoud_0. Accessed December 2014

  • KNMI (Koninklijk Nederlands Meteorologisch Instituut) (2014) http://www.knmi.nl/nederland-nu/klimatologie/lijsten/hittegolven

  • Knowledge for climate. http://www.knowledgeforclimate.nl/programme/background. Accessed Jun 2015

  • Koopmans S (2010) First assessment of the urban heat island in the Netherlands. Exploring urban heat and heat stress in the Netherlands, using observations from hobby meteorologists. BSc Thesis, Wageningen University, p 35

    Google Scholar 

  • Kurn D, Bretz S, Huang B, Akbari H (1994) The potential for reducing urban air temperatures and energy consumption through vegetative cooling (31 pp). ACEEE Summer Study on Energy Efficiency in Buildings. American Council for an Energy Efficient Economy, Pacific Grove, CA

    Book  Google Scholar 

  • Lindberg E, Hollaus M, Mücke W, Fransson JES, Pfeifer N (2013) Detection of lying tree stems from airborne laser scanning data using a line template matching algorithm. In: Proceedings of ISPRS Annals II-5/W2, Antalya, Turkey, 11–13 November 2013

    Google Scholar 

  • Liu L, Zhang Y (2011) Urban heat island analysis using the Landsat TM Data and ASTER Data: a case study in Hong Kong. Remote Sens 3:1535–1552

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997

    Article  Google Scholar 

  • Morris CJG, Simmonds I, Plummer N (2001) Quantification of the influences of wind and cloud on the nocturnal urban heat islands of a large city. J Appl Meteorol 40:169–182

    Article  Google Scholar 

  • NASA. http://atmcorr.gsfc.nasa.gov/. Accessed 2014

  • Nichol J, Wong M (2004) Modeling urban environmental quality in a tropical city. Landsc Urban Plann 73:49–58

    Article  Google Scholar 

  • Odindi JO, Bangamwabo V, Mutanga O (2015) Assessing the value of urban green spaces in mitigating multi-seasonal urban heat using Modis land surface temperature (LST) and Landsat 8 data. Int J Environ Res 9(1):9–18

    Google Scholar 

  • Oke TR (1973) City size and urban heat island. Atmos Environ 7(8):769–779

    Article  Google Scholar 

  • Oke TR (1981) Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J Climatol 1:237–254

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J Roy Meteorol Soc 108(455):1–24

    Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, pp 262–303, 8

    Google Scholar 

  • Oke TR (1997) Urban environments. In: Bailey WG, Oke TR, Rouse WR (eds) Surface climates of Canada. Mc Gill-Queen’s University Press, Montréal, pp 303–327

    Google Scholar 

  • Onishi A, Cao X, Ito T, Shi F, Imura H (2010) Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For Urban Green 9:323–332

    Article  Google Scholar 

  • Park HS (1987) Variations in the urban heat island intensity affected by geographical environments, Environmental Research Center Papers 11. University of Tsukuba, Ibaraki

    Google Scholar 

  • Parlow E (1998) Net radiation of urban areas. In: Proceedings of the 17th EARSeL symposium on future trends in remote sensing, Lyngby, Denmark, 17–19 June 1997. Balkema, Rotterdam, pp 221–226

    Google Scholar 

  • Parlow E (2003) The urban heat budget derived from satellite data. Geograph Helv 58(2):99–111

    Article  Google Scholar 

  • Price JC (1979) Assessment of the urban heat island effect through the use of satellite data. Mon Weather Rev 107(11):1554–1557

    Article  Google Scholar 

  • Rajasekar U, Weng (2009) Spatio-temporal modelling and analysis or urban heat islands by using Landsat TM and ETM+ imagery. Int J Rem Sens 30(13):3531–3548

    Article  Google Scholar 

  • Richter R, Muller A (2005) De-shadowing of satellite/airborne imagery. Int J Rem Sens 26:3137–3148

    Article  Google Scholar 

  • Richter R, Schlapfer D (2013) Atmospheric/topographic correction for satellite imagery. ATCOR-2/3 User Guide, Version 8.2.1. http://www.rese.ch/products/atcor/atcor3/

  • Rigo G, Parlow E (2007) Modelling the ground heat flux of an urban area using remote sensing data. Theor Appl Climatol 90:185–199

    Article  Google Scholar 

  • Rosenzweig C, Solecki WD, Slosberg RB (2006) Mitigating New Yorks city’s heat island with urban forestry, living roofs, and light surfaces. New York city regional heat island initiative final report. New York State Energy Research and Development Authority (NYSERDA), Albany, NY

    Google Scholar 

  • Roth M, Oke T, Emery WJ (1989) Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int J Rem Sens 10:1699–1720

    Article  Google Scholar 

  • Sailor DJ (1995) Simulated urban climate response to modification in surface albedo and vegetative cover. J Appl Meteorol 34(7):1694–1704

    Article  Google Scholar 

  • Schar C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432:559–560

    Article  Google Scholar 

  • Steeneveld GJ, Koopmans S, Heusinkveld BG, Van Hove LWA, Holtslag AAM (2011) Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J Geophys Res 116:D20129

    Article  Google Scholar 

  • Svensson MK (2004) Sky view factor analysis: implications for urban air temperature differences. Meteorol Appl 11–3:201–211

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energ Build 25:99–103

    Article  Google Scholar 

  • Taha H, Akbari H, Rosenfeld AH, Huand YJ (1988) Residential cooling loads and the urban heat island: the effects of albedo. Build Environ 23:271–283

    Article  Google Scholar 

  • Taha H, Akbari H, Sailor D, Ritschard R (1992) Causes and effects of heat islands: sensitivity to surface parameters and anthropogenic heating. Lawrence Berkeley Lab. Rep. 29864, Berkeley, CA

    Google Scholar 

  • Unger J (2009) Some aspects of the urban heat island phenomenon. Thesis for the MTA doctor’s degree

    Google Scholar 

  • Uno I, Wakamatsu I, Ueda H, Nakamura A (1988) An observational study of the structure of the nocturnal urban boundary layer. Bound-Lay Meteorol 45:59–82

    Article  Google Scholar 

  • U.S. Environmental Protection Agency’s Office of Atmospheric Programs, Climate Protection Partnership Division. Reducing urban heat islands: compendium of strategies cool pavements. http://www.epa.gov/hiri/mitigation/pavements.htm

  • U.S. Environmental Protection Agency’s Office of Atmospheric Programs, Climate Protection Partnership Division. Reducing urban heat islands: compendium of strategies cool roofs. http://www.epa.gov/hiri/resources/pdf/CoolRoofsCompendium.pdf

  • USGS (US Geological Survey), Earth Resources Observation and Science Center (EROS) (consulted 2013). http://glovis.usgs.gov/

  • Voogt J (2002) Urban heat island. In: Munn T (ed) Encyclopedia of global environmental change, vol 3. Wiley, Chichester, pp 660–666

    Google Scholar 

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386

    Article  Google Scholar 

  • Zaksel K, Oštir K, Kokalj Ž (2011) Sky-view factor as a relief visualization technique. Remote Sens 3:398–415

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Climate Proof Cities Consortium of the Knowledge for Climate research project (CPC 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyre Echevarría Icaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Echevarría Icaza, L., van der Hoeven, F.D., van den Dobbelsteen, A. (2016). The Urban Heat Island Effect in Dutch City Centres: Identifying Relevant Indicators and First Explorations. In: Leal Filho, W., Adamson, K., Dunk, R., Azeiteiro, U., Illingworth, S., Alves, F. (eds) Implementing Climate Change Adaptation in Cities and Communities. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-28591-7_7

Download citation

Publish with us

Policies and ethics