Skip to main content

Estimation of Fiber Orientations Using Neighborhood Information

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 893 Accesses

Abstract

Diffusion magnetic resonance imaging (dMRI) has been used to noninvasively reconstruct fiber tracts. Fiber orientation (FO) estimation is a crucial step in the reconstruction, especially in the case of crossing fibers. In FO estimation, it is important to incorporate spatial coherence of FOs to reduce the effect of noise. In this work, we propose a method of FO estimation using neighborhood information. The diffusion signal is modeled by a fixed tensor basis. The spatial coherence is enforced in weighted 1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is ensured by the agreement between raw and reconstructed diffusion signals. The resulting objective function is solved using a block coordinate descent algorithm. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for qualitative and quantitative evaluation. The results demonstrate that the proposed method improves the quality of FO estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  2. Becker, S., Tabelow, K., Mohammadi, S., Weiskopf, N., Polzehl, J.: Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS. NeuroImage 95, 90–105 (2014)

    Article  Google Scholar 

  3. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1), 144–155 (2007)

    Article  Google Scholar 

  4. Bilgic, B., Setsompop, K., Cohen-Adad, J., Yendiki, A., Wald, L.L., Adalsteinsson, E.: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magn. Reson. Med. 68(6), 1747–1754 (2012)

    Article  Google Scholar 

  5. Daducci, A., Van De Ville, D., Thiran, J.P., Wiaux, Y.: Sparse regularization for fiber ODF reconstruction: from the suboptimality of 2 and 1 priors to 0. Med. Image Anal. 18(6), 820–833 (2014)

    Article  Google Scholar 

  6. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  7. Hao, X., Fletcher, P.: Joint fractional segmentation and multi-tensor estimation in diffusion MRI. In: Gee, J., Joshi, S., Pohl, K., Wells, W., Zllei, L. (eds.) Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 7917, pp. 340–351. Springer, Berlin (2013). http://dx.doi.org/10.1007/978-3-642-38868-2_29

    Chapter  Google Scholar 

  8. Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans. Med. Imaging 26(11), 1464–1471 (2007)

    Article  Google Scholar 

  9. Kim, S.J., Koh, K., Lustig, M., Boyd, S.: An efficient method for compressed sensing. In: IEEE International Conference on Image Processing, vol. 3, pp. 117–120 (2007)

    Google Scholar 

  10. Landman, B.A., Bogovic, J.A., Wan, H., ElShahaby, F.E.Z., Bazin, P.L., Prince, J.L.: Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI. NeuroImage 59(3), 2175–2186 (2012)

    Article  Google Scholar 

  11. Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4(6), 469–480 (2003)

    Article  Google Scholar 

  12. Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17(5), 556–572 (2013)

    Google Scholar 

  13. Michailovich, O., Rathi, Y., Dolui, S.: Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans. Med. Imaging 30(5), 1100–1115 (2011)

    Article  Google Scholar 

  14. Pasternak, O., Assaf, Y., Intrator, N., Sochen, N.: Variational multiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. Magn. Reson. Imaging 26(8), 1133–1144 (2008). http://www.sciencedirect.com/science/article/pii/S0730725X08000490

    Article  Google Scholar 

  15. Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Carney, P., Mareci, T.: Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry. IEEE Trans. Med. Imaging 26(8), 1091–1102 (2007)

    Article  Google Scholar 

  16. Sigurdsson, G.A., Prince, J.L.: Smoothing fields of weighted collections with applications to diffusion MRI processing. In: SPIE Medical Imaging, pp. 90342D–90342D (2014)

    Google Scholar 

  17. Tournier, J., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  18. Ye, C., Carass, A., Murano, E., Stone, M., Prince, J.L.: A Bayesian approach to distinguishing interdigitated muscles in the tongue from limited diffusion weighted imaging. In: Bayesian and Graphical Models for Biomedical Imaging. Lecture Notes in Computer Science, vol. 8677, pp. 13–24. Springer, Berlin (2014)

    Google Scholar 

  19. Yeh, F.C., Wedeen, V., Tseng, W.Y.: Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)

    Article  Google Scholar 

  20. Zhou, Q., Michailovich, O., Rathi, Y.: Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion. In: SPIE Medical Imaging, pp. 903425–903425 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NIH/NINDS 5R01NS056307, and NIH/NINDS 1R21NS082891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ye, C., Zhuo, J., Gullapalli, R.P., Prince, J.L. (2016). Estimation of Fiber Orientations Using Neighborhood Information. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-28588-7_8

Download citation

Publish with us

Policies and ethics