Skip to main content

Alzheimer’s Disease Classification with Novel Microstructural Metrics from Diffusion-Weighted MRI

  • Conference paper
  • First Online:
Book cover Computational Diffusion MRI

Abstract

Alzheimer’s disease (AD) deficits may be due in part to declining white matter (WM) integrity and disrupted connectivity. Numerous diffusion-weighted MRI (dMRI) studies of AD report WM deficits based on tensor model metrics. New microstructural measures derived from additional dMRI models may carry different information about WM microstructure including the geometry of diffusion anisotropy, diffusivity, complexity, estimated number of distinguishable fiber compartments, number of crossing fibers and neurite dispersion. Here we aimed to find the most helpful dMRI metrics and brain regions from a set of 17 dMRI-derived feature maps, to predict diagnostic group (AD or healthy control). The best metrics for classification were non-tensor metrics in the hippocampus and temporal lobes, areas consistently implicated in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Disease Association: Alzheimer’s disease facts and figures. Alzheimers Dement. 8(2), 131–168 (2012)

    Article  Google Scholar 

  2. Petersen, R.C., et al.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)

    Article  Google Scholar 

  3. Bruscoli, M., Lovestone, S.: Is MCI really just early dementia? A systematic review of conversion studies. Int. Psychogeriatr. 16(2), 129–140 (2004)

    Article  Google Scholar 

  4. Delbeuck, X., et al.: Alzheimer’s disease as a disconnection syndrome? Neuropsychol. Rev. 13, 79e92 (2003)

    Article  Google Scholar 

  5. Jack Jr., C.R., et al.: Update on the magnetic resonance imaging core of the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement. 6(3), 212–220 (2010)

    Article  Google Scholar 

  6. Descoteaux, M., Poupon, C.: Diffusion-weighted MRI. In: Belvic, D., Belvic, K. (eds.) Comprehensive Biomedical Physics, vol. 3, no. 6, pp. 81–97. Elsevier, Oxford (2014)

    Google Scholar 

  7. Behrens, T.E.J., et al.: Probabilistic diffusion tractography with multiple fibre orientations. What can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  8. Descoteaux, M.: High angular resolution diffusion MRI: from local estimation to segmentation and tractography. Ph.D. Thesis, Université de Nice (2008)

    Google Scholar 

  9. Xie, S., et al.: Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 66(12), 1845–1849 (2006)

    Article  Google Scholar 

  10. Canu, E., et al.: Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. J. Alzheimers Dis. 19(3), 963–976 (2010)

    Google Scholar 

  11. Leow, A.D., et al.: The tensor distribution function. Magn. Reson. Med. 61(1), 205–214 (2009)

    Article  Google Scholar 

  12. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  13. Tournier, J.D., et al.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23, 1176–1185 (2004)

    Article  Google Scholar 

  14. Wedeen, V.J., et al.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005)

    Article  Google Scholar 

  15. Zhang, H., et al.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  16. Medina, D., et al.: White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol. Aging 27(5), 663–672 (2006)

    Article  Google Scholar 

  17. Rose, S.E., et al.: Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 77(10), 1122–1128 (2006)

    Article  Google Scholar 

  18. Zhang, Y., et al.: Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 68(1), 13–19 (2007)

    Article  Google Scholar 

  19. Kavcic, V., et al.: White matter integrity linked to functional impairments in aging and early Alzheimer’s disease. Alzheimers Dement. 4(6), 381–389 (2008)

    Article  Google Scholar 

  20. Stebbins, G.T., Murphy, C.M.: Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behav. Neurol. 21(1), 39–49 (2009)

    Article  Google Scholar 

  21. Graña, M., et al.: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation. Neurosci. Lett. 502, 225e229 (2011)

    Article  Google Scholar 

  22. Haller, S., et al.: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J. Alzheimers Dis. 22, 315e327 (2010)

    Google Scholar 

  23. O’Dwyer, L., et al.: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One 7, e32441 (2012)

    Article  Google Scholar 

  24. Nir, T., et al.: Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin. 3, 180–195 (2013)

    Article  Google Scholar 

  25. Holmes, C.J., et al.: Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22, 324–333 (1998)

    Article  Google Scholar 

  26. Leow, A.D., et al.: Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans. Med. Imaging 26(6), 822–832 (2007)

    Article  Google Scholar 

  27. Basser, P.J., et al.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  28. Song, S.K., et al.: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722 (2003)

    Article  Google Scholar 

  29. Song, S.K., et al.: Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26(1), 132–140 (2005)

    Article  Google Scholar 

  30. Batchelor, P.G., et al.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53, 221–225 (2005)

    Article  Google Scholar 

  31. Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Reson. Med. 55, 136–146 (2006)

    Article  Google Scholar 

  32. Jian, B., et al.: A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage 37(1), 164–176 (2007)

    Article  Google Scholar 

  33. Zhan, L., et al.: A novel measure of fractional anisotropy based on the tensor distribution function. Med. Image Comput. Comput. Assist. Interv. 12(Pt 1), 845–852 (2009)

    Google Scholar 

  34. Aganj, I., et al.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–466 (2010)

    Google Scholar 

  35. Zhang, H., et al.: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56(3), 1301–1315 (2011)

    Article  Google Scholar 

  36. Gutman, B., et al.: Creating Unbiased Minimal Deformation Templates for Brain Volume Registration. Organization for Human Brain Mapping, Barcelona (2010)

    Google Scholar 

  37. Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1), 11–22 (2004)

    Article  Google Scholar 

  38. Patenaude, B., et al.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56, 907–922 (2011)

    Article  Google Scholar 

  39. Mori, S., et al.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2), 570–582 (2008)

    Article  Google Scholar 

  40. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Statist. Soc. B 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Brun, A., Englund, E.: White matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann. Neurol. 19(3), 253–262 (1986)

    Article  Google Scholar 

  42. Sjobeck, M., et al.: Decreasing myelin density reflected increasing white matter pathology in Alzheimer’s disease—a neuropathological study. Int. J. Geriatr. Psychiatry 20(10), 919–926 (2005)

    Article  Google Scholar 

  43. Hua, X., et al.: 3D characterization of brain atrophy in Alzheimer’s disease and mild cognitive impairment using tensor-based morphometry. Neuroimage 41(1), 19–34 (2008)

    Article  Google Scholar 

  44. Migliaccio, R., et al.: White matter atrophy in Alzheimer’s disease variants. Alzheimers Dement. 8(5 Suppl.), S78-87 e71-72 (2012)

    Google Scholar 

  45. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  46. Klöppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131, 681–689 (2008)

    Article  Google Scholar 

  47. Lerch, J.P., et al.: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol. Aging 29(1), 23–30 (2008)

    Article  MathSciNet  Google Scholar 

  48. Magnin, B., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)

    Article  Google Scholar 

  49. Wee, C.Y., et al.: Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage 54(3), 1812–1822 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Talia M. Nir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nir, T.M. et al. (2016). Alzheimer’s Disease Classification with Novel Microstructural Metrics from Diffusion-Weighted MRI. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-28588-7_4

Download citation

Publish with us

Policies and ethics