Skip to main content

Holistic Image Reconstruction for Diffusion MRI

  • Conference paper
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion MRI provides unique information on the microarchitecture of biological tissues. One of the major challenges is finding a balance between image resolution, acquisition duration, noise level and image artifacts. Recent methods tackle this challenge by performing super-resolution reconstruction in image space or in diffusion space, regularization of the image data or of postprocessed data (such as the orientation distribution function, ODF) along different dimensions, and/or impose data-consistency in the original acquisition space. Each of these techniques has its own advantages; however, it is rare that even a few of them are combined. Here we present a holistic framework for diffusion MRI reconstruction that allows combining the advantages of all these techniques in a single reconstruction step. In proof-of-concept experiments, we demonstrate super-resolution on HARDI shells and in image space, regularization of the ODF and of the images in spatial and angular dimensions, and data consistency in the original acquisition space. Reconstruction quality is superior to standard reconstruction, demonstrating the feasibility of combining advanced techniques into one step.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The ODF is a formalism that characterizes the strength of diffusion in different directions. It is defined formally below in Eq. (10).

  2. 2.

    The precise formula that we use for R(r) will follow later in Eq. (12).

References

  1. Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  3. Khare, K., Hardy, C.J., King, K.F., Turski, P.A., Marinelli, L.: Accelerated MR imaging using compressive sensing with no free parameters. Magn. Reson. Med. 68(5), 1450–1457 (2012)

    Article  Google Scholar 

  4. Paquette, M., Merlet, S., Gilbert, G., Deriche, R., Descoteaux, M.: Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging. Magn. Reson. Med. 73, 401–416 (2015)

    Article  Google Scholar 

  5. Tao, S., Trzasko, J.D., Shu, Y., Huston, J., Bernstein, M.A.: Integrated image reconstruction and gradient nonlinearity correction. Magn. Reson. Med. 74(4), 1019–1031 (2015)

    Article  Google Scholar 

  6. Feng, L., Grimm, R., Block, K.T., Chandarana, H., Kim, S., Xu, J., Axel, L., Sodickson, D.K., Otazo, R.: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn. Reson. Med. 72, 707–717 (2014)

    Article  Google Scholar 

  7. Cauley, S.F., Xi, Y., Bilgic, B., Xia, J., Adalsteinsson, E., Balakrishnan, V., Wald, L.L., Setsompop, K.: Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver. Magn. Reson. Med. 73, 1034–1040 (2015)

    Article  Google Scholar 

  8. Mani, M., Jacob, M., Guidon, A., Magnotta, V., Zhong, J.: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Magn. Reson. Med. 73, 126–138 (2015)

    Article  Google Scholar 

  9. Rathi, Y., Michailovich, O., Laun, F., Setsompop, K., Grant, P.E., Westin, C.F.: Multi-shell diffusion signal recovery from sparse measurements. Med. Image Anal. 18(7), 1143–1156 (2014)

    Article  Google Scholar 

  10. Scherrer, B., Gholipour, A., Warfield, S.K.: Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med. Image Anal. 16(7), 1465–1476 (2012)

    Article  Google Scholar 

  11. Poot, D.H.J., Jeurissen, B., Bastiaensen, Y., Veraart, J., Van Hecke, W., Parizel, P.M., Sijbers, J.: Super-resolution for multislice diffusion tensor imaging. Magn. Reson. Med. 69(1), 103–113 (2013)

    Article  Google Scholar 

  12. Tobisch, A., Neher, P.F., Rowe, M.C., Maier-Hein, K.H., Zhang, H.: Model-based super-resolution of diffusion MRI. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E. (eds.) Computational Diffusion MRI and Brain Connectivity, MICCAI Workshops 2013. Mathematics and Visualization, pp. 25–34. Springer International Publishing Switzerland (2014)

    Google Scholar 

  13. Golkov, V., Sperl, J.I., Menzel, M.I., Sprenger, T., Tan, E.T., Marinelli, L., Hardy, C.J., Haase, A., Cremers, D.: Joint super-resolution using only one anisotropic low-resolution image per q-space coordinate. In: O’Donnell, L., Nedjati-Gilani, G., Rathi, Y., Reisert, M., Schneider, T. (eds.) Computational Diffusion MRI, MICCAI Workshop 2014, pp. 181–191. Springer International Publishing Switzerland (2015)

    Google Scholar 

  14. Van Steenkiste, G., Jeurissen, B., Veraart, J., den Dekker, A.J., Parizel, P.M., Poot, D.H.J., Sijbers, J.: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations. Magn. Reson. Med. 75(1), 181–195 (2016)

    Article  Google Scholar 

  15. Valkonen, T.: A primal-dual hybrid gradient method for non-linear operators with applications to MRI. Inverse Prob. 30(5), 055012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brown, R.W., Cheng, Y.C.N., Haacke, E.M., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd edn. Wiley, Hoboken (published simultaneously in Canada) (2014)

    Google Scholar 

  17. Welsh, C.L., Dibella, E.V.R., Adluru, G., Hsu, E.W.: Model-based reconstruction of undersampled diffusion tensor k-space data. Magn. Reson. Med. 70(2), 429–440 (2013)

    Article  Google Scholar 

  18. Valkonen, T., Bredies, K., Knoll, F.: TGV for diffusion tensors: a comparison of fidelity functions. J. Inverse Ill-Posed Prob. 21(3), 355–377 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  20. Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5(12), e15710 (2010)

    Article  Google Scholar 

  21. Setsompop, K., Cohen-Adad, J., Gagoski, B.A., Raij, T., Yendiki, A., Keil, B., Wedeen, V.J., Wald, L.L.: Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63(1), 569–580 (2012)

    Article  Google Scholar 

  22. Xu, J., Li, K., Smith, R.A., Waterton, J.C., Zhao, P., Chen, H., Does, M.D., Manning, H.C., Gore, J.C.: Characterizing tumor response to chemotherapy at various length scales using temporal diffusion spectroscopy. PLoS ONE 7(7), e41714 (2012)

    Article  Google Scholar 

  23. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.J.: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage 80, 125–143 (2013)

    Article  Google Scholar 

  24. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  25. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012)

    Article  Google Scholar 

  26. Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  27. Lin, C.P., Wedeen, V.J., Chen, J.H., Yao, C., Tseng, W.Y.I.: Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. NeuroImage 19, 482–495 (2003)

    Article  Google Scholar 

  28. Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965)

    Article  Google Scholar 

  29. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: 2009 IEEE 12th International Conference on Computer Vision (ICCV). Number 813396, IEEE, pp. 1133–1140 (2009)

    Google Scholar 

  30. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Parikh, N., Boyd, S.: Proximal Algorithms. Found. Trends Optim. 1, 123–231 (2014)

    Google Scholar 

  32. Yeh, F.-C., Wedeen, V.J., Tseng, W.-Y.I.: Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9), 1626–1635 (2010)

    Article  Google Scholar 

  33. Golkov, V., Dosovitskiy, A., Sämann, P., Sperl, J.I., Sprenger, T., Czisch, M., Menzel, M.I., Gómez, P.A., Haase, A., Brox, T., Cremers, D.: q-Space deep learning for twelve-fold shorter and model-free diffusion MRI scans. In: MICCAI (2015)

    Book  Google Scholar 

  34. Portegies, J.M., Fick, R.H.J., Sanguinetti, G.R., Meesters, S.P.L., Girard, G., Duits, R.: Improving fiber alignment in HARDI by combining contextual PDE flow with constrained spherical deconvolution. PLoS ONE. See http://bmia.bmt.tue.nl/people/RDuits/mainJorg.pdf (2015, submitted). Available on arXiv 2015

Download references

Acknowledgements

V.G. is supported by the Deutsche Telekom Foundation. The research leading to the results of this article has received funding from the European Research Council under the ECs 7th Framework Programme (FP7/2007-2014)/ERC grant agr. no. 335555. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Golkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Golkov, V., Portegies, J.M., Golkov, A., Duits, R., Cremers, D. (2016). Holistic Image Reconstruction for Diffusion MRI. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-28588-7_3

Download citation

Publish with us

Policies and ethics