Skip to main content

Adaptive Enhancement in Diffusion MRI Through Propagator Sharpening

  • Conference paper
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this short note we consider a method of enhancing diffusion MRI data based on analytically deblurring the ensemble average propagator. Because of the Fourier relationship between the normalized signal and the propagator, this technique can be applied in a straightforward manner to a large class of models. In the case of diffusion tensor imaging, a commonly used ‘ad hoc’ \(\min\)-normalization sharpening method is shown to be closely related to this deblurring approach. The main goal of this manuscript is to give a formal description of the method for (generalized) diffusion tensor imaging and higher order apparent diffusion coefficient-based models. We also show how the method can be made adaptive to the data, and present the effect of our proposed enhancement on scalar maps and tractography output.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We assume a standard pulsed gradient spin echo sequence.

  2. 2.

    This follows from Eq. (1) under some regularity conditions.

  3. 3.

    http://bmia.bmt.tue.nl/software/viste/.

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  2. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111(3), 209–219 (1996)

    Article  Google Scholar 

  3. Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994)

    Article  Google Scholar 

  4. Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford (1991)

    Google Scholar 

  5. Canales-Rodríguez, E.J., Iturria-Medina, Y., Alemán-Gómez, Y., Melie-García, L.: Deconvolution in diffusion spectrum imaging. NeuroImage 50(1), 136–149 (2010)

    Article  Google Scholar 

  6. Catani, M., Thiebautdeschotten, M.: A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44(8), 1105–1132 (2008)

    Article  Google Scholar 

  7. Dela Haije, T.C.J., Fuster, A., Florack, L.M.J.: Reconstruction of convex polynomial diffusion MRI models using semi-definite programming. In: Proceedings of the 23rd Annual Meeting of the ISMRM, Toronto, p. 2821 (2015)

    Google Scholar 

  8. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)

    Article  Google Scholar 

  9. Descoteaux, M., Lenglet, C., Deriche, R.: Diffusion tensor sharpening improves white matter tractography. Proc. SPIE (Med. Imaging 2007: Image Process.) 6512, 65121J (2007)

    Google Scholar 

  10. Florack, L., Astola, L.: A multi-resolution framework for diffusion tensor images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08, pp. 1–7 (2008)

    Google Scholar 

  11. Florack, L.M.J., Fuster, A.: Riemann-Finsler geometry for diffusion weighted magnetic resonance imaging. In: Westin, C.F., Vilanova, A., Burgeth, B. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pp. 189–208. Mathematics and Visualization, vol. XV. Springer, Berlin (2014)

    Google Scholar 

  12. Fuster, A., Tristán-Vega, A., Dela Haije, T., Westin, C.-F., Florack, L.: A novel Riemannian metric for geodesic tractography in DTI. In: Computational Diffusion MRI and Brain Connectivity, pp. 97–104. Springer, Berlin (2014)

    Google Scholar 

  13. Fuster, A., Dela Haije, T., Tristán-Vega, A., Plantinga, B., Westin, C.-F., Florack, L.: Adjugate diffusion tensors for geodesic tractography in white matter. J. Math. Imaging Vision 54(1), 1–14 (2016). doi:10.1007/s10851-015-0586-8

    Article  MathSciNet  Google Scholar 

  14. Ghosh, A., Deriche, R., Moakher, M.: Ternary quartic approach for positive 4th order diffusion tensors revisited. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI’09, pp. 618–621 (2009)

    Google Scholar 

  15. Ghosh, A., Milne, T., Deriche, R.: Constrained diffusion kurtosis imaging using ternary quartics & MLE. Magn. Reson. Med. 71(4), 1581–1591 (2014)

    Article  Google Scholar 

  16. Hao, X., Whitaker, R., Fletcher, P.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Information Processing in Medical Imaging, pp. 13–24 (2011)

    Google Scholar 

  17. Hao, X., Zygmunt, K., Whitaker, R.T., Fletcher, P.T.: Improved segmentation of white matter tracts with adaptive Riemannian metrics. Med. Image Anal. 18(1), 161–175 (2014)

    Article  Google Scholar 

  18. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005)

    Article  Google Scholar 

  19. Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L.: White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18(4), 306–321 (2003)

    Article  Google Scholar 

  20. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51(5), 924–937 (2004)

    Article  Google Scholar 

  21. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco, CA (1973)

    Google Scholar 

  22. Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsed-field-gradient diffusion measurements. J. Magn. Reson. Ser. A 113(1), 94–101 (1995)

    Article  Google Scholar 

  23. Mori, S., Crain, B.J.: MRI Atlas of Human White Matter. Elsevier, Amsterdam, Boston (2005)

    Google Scholar 

  24. Novikov, D.S., Kiselev, V.G.: Effective medium theory of a diffusion-weighted signal. NMR Biomed. 23(7), 682–697 (2010)

    Article  Google Scholar 

  25. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Article  Google Scholar 

  26. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Fiber orientation mapping using generalized diffusion tensor imaging. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2004, pp. 1036–1039 (2004)

    Google Scholar 

  27. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn. Reson. Med. 53(4), 866–876 (2005)

    Article  Google Scholar 

  28. Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path tractography in DTI using Gaussian process ODE solvers. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Nagoya (2014)

    Google Scholar 

  29. Sepasian, N., ten Thije Boonkkamp, J.H.M., Ter Haar Romeny, B.M., Vilanova, A.: Multivalued geodesic ray-tracing for computing brain connections using diffusion tensor imaging. SIAM J. Imag. Sci. 5(2), 483–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm. NeuroImage 20(1), 276–288 (2003)

    Article  Google Scholar 

  31. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  32. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Tom Dela Haije gratefully acknowledges The Netherlands Organisation for Scientific Research (NWO) for financial support. Neda Sepasian and Tom Dela Haije are equal first authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Dela Haije .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dela Haije, T., Sepasian, N., Fuster, A., Florack, L. (2016). Adaptive Enhancement in Diffusion MRI Through Propagator Sharpening. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-28588-7_12

Download citation

Publish with us

Policies and ethics