Skip to main content

Distributions of Costs and Benefits Within Groups

  • Chapter
  • First Online:
Sociality: The Behaviour of Group-Living Animals

Abstract

The previous two chapters described how resources and risk affect the costs and benefits that group members obtain from sociality. However, not all group members necessarily obtain the same benefits, nor do all pay the same costs. The net benefit of group membership is typically skewed in favour of some individuals to the detriment of others. In some cases this skew may be extreme, so that it may pay some group members to leave the group, depending on the opportunities available outside the group. More often, however, all members of the group fare better than they might on their own, even if some do better than others. Furthermore, the benefits and costs are not fixed, so that those that obtain relative low rewards at one point in time may be able to improve their lot subsequently. There are two main predictors of these cost and benefit inequalities within groups: firstly, the position that an animal occupies within a group, relative to other group members, and, secondly, the position an animal occupies within a dominance hierarchy. These factors often interact, with dominant individuals taking up the most favoured positions at the expense of their subordinate social partners. In this chapter, we first examine the payoffs associated with different positions in animal groups; we then examine how animals are able to respond dynamically to these by adjusting their relative position in their group. Finally, we examine the constraints that animals may face on their ability to take up beneficial spatial positions within groups with particular reference to the existence of dominance hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams MV, Colgan PW (1985) Risk of predation, hydrodynamic efficiency and their influence on school structure. Environ Biol Fishes 13(3):195–202. doi:10.1007/bf00000931

    Article  Google Scholar 

  • Alberts JR (1978) Huddling by rat pups – group behavioral mechanisms of temperature regulation and energy-conservation. J Comp Physiol Psychol 92(2):231–245. doi:10.1037/h0077459

    Article  CAS  PubMed  Google Scholar 

  • Armstrong EA, Whitehouse HLK (1977) Behavioral adaptations of wren (troglodytes-troglodytes). Biol Rev Camb Philos Soc 52(2):235–294. doi:10.1111/j.1469-185X.1977.tb01352.x

    Article  Google Scholar 

  • Bajec IL, Heppner FH (2009) Organized flight in birds. Anim Behav 78(4):777–789. doi:10.1016/j.anbehav.2009.07.007

    Article  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76:201–215. doi:10.1016/j.anbehav.2008.02.004

    Article  Google Scholar 

  • Bautista A, Garcia-Torres E, Martinez-Gomez M, Hudson R (2008) Do newborn domestic rabbits Oryctolagus cuniculus compete for thermally advantageous positions in the litter huddle? Behav Ecol Sociobiol 62(3):331–339. doi:10.1007/s00265-007-0420-4

    Article  Google Scholar 

  • Beauchamp G (2013) Social foragers adopt a riskier foraging mode in the centre of their groups. Biol Lett 9(6). doi:10.1098/rsbl.2013.0528

    Google Scholar 

  • Beauchamp G (2014) Social predation: how group living benefits predators and prey. Academic Press, Amsterdam

    Google Scholar 

  • Black JM, Carbone C, Wells RL, Owen M (1992) Foraging dynamics in goose flocks – the cost-of-living on the edge. Anim Behav 44(1):41–50. doi:10.1016/s0003-3472(05)80752-3

    Article  Google Scholar 

  • Bosiger YJ, McCormick MI (2014) Temporal links in daily activity patterns between coral reef predators and their prey. Plos One 9(10). doi:10.1371/journal.pone.0111723

    Google Scholar 

  • Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762. doi:10.1016/j.cub.2010.08.041

    Article  CAS  PubMed  Google Scholar 

  • Broly P, Devigne L, Deneubourg JL, Devigne C (2014) Effects of group size on aggregation against desiccation in woodlice (Isopoda: Oniscidea). Physiol Entomol 39(2):165–171. doi:10.1111/phen.12060

    Article  Google Scholar 

  • Brunton DH (1997) Impacts of predators: Center nests are less successful than edge nests in a large nesting colony of Least Terns. Condor 99(2):372–380. doi:10.2307/1369943

    Article  Google Scholar 

  • Bryant DM, Newton AV (1994) Metabolic costs of dominance in dippers, Cinclus cinclus. Anim Behav 48(2):447–455. doi:10.1006/anbe.1994.1258

    Article  Google Scholar 

  • Bumann D, Krause J, Rubenstein D (1997) Mortality risk of spatial positions in animal groups: The danger of being in the front. Behaviour 134:1063–1076

    Article  Google Scholar 

  • Burgerhout E, Tudorache C, Brittijn SA, Palstra AP, Dirks RP, van den Thillart GE (2013) Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. J Exp Mar Biol Ecol 448:66–71

    Article  Google Scholar 

  • Burns ALJ, Herbert-Read JE, Morrell LJ, Ward AJW (2012) Consistency of leadership in Shoals of Mosquitofish (Gambusia holbrooki) in novel and in familiar environments. PLoS One 7(5):e36567. doi:10.1371/journal.pone.0036567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calf K, Adams N, Slotow R (2002) Dominance and huddling behaviour in Bronze Mannikin Lonchura cucullata flocks. Ibis 144(3):488–493. doi:10.1046/j.1474-919X.2002.00039.x

    Article  Google Scholar 

  • Chungu H, Speybroeck N, Pegram RG, Berkvens DL (2001) Rhipicephalus appendiculatus burdens on cattle in relation to age and sex of the host. Tropicultura 19(1):34–36

    Google Scholar 

  • Coleman RA (2010) Limpet aggregation does not alter desiccation in the limpet Cellana tramoserica. J Exp Mar Biol Ecolo 386(1–2):113–118. doi:10.1016/j.jembe.2010.02.011

    Article  Google Scholar 

  • Couzin ID, Krause J (2003) Self-organization and collective behavior in vertebrates. In: Advances in the study of behavior, vol 32. pp 1–75

    Google Scholar 

  • de Waal F (1982) Chimpanzee politics. Power and sex among apes. Chimpanzee politics. Power and sex among apes

    Google Scholar 

  • DeBlois EM, Rose GA (1996) Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua). Oecologia 108(1):192–196

    Article  Google Scholar 

  • Desrochers A (1989) Sex, dominance, and microhabitat use in wintering black-capped chickadees – a field experiment. Ecology 70(3):636–645. doi:10.2307/1940215

    Article  Google Scholar 

  • Di Blanco Y, Hirsch BT (2006) Determinants of vigilance behavior in the ring-tailed coati (Nasua nasua): the importance of within-group spatial position. Behav Ecol Sociobiol 61(2):173–182. doi:10.1007/s00265-006-0248-3

    Article  Google Scholar 

  • Doonan IJ, Bull B, Coombs RF (2003) Star acoustic surveys of localized fish aggregations. Ices J Marine Sci 60(1):132–146. doi:10.1006/jmsc.2002.1331

    Article  Google Scholar 

  • Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Tr Royal Soc B Biol Sci 357:1539–1547

    Article  Google Scholar 

  • Dukas R, Kamil A (2000) The cost of limited attention in blue jays. Behav Ecolo 11:502–506

    Article  Google Scholar 

  • Ekman J (1986) Tree use and predator vulnerability of wintering passerines. Ornis Scan 17(3):261–267. doi:10.2307/3676836

    Article  Google Scholar 

  • Ekman J (1987) Exposure and time use in willow tit flocks – the cost of subordination. Anim Behav 35:445–452. doi:10.1016/s0003-3472(87)80269-5

    Article  Google Scholar 

  • Ekman JB, Askenmo CEH (1984) Social rank and habitat use in willow TIT groups. Anim Behav 32(MAY):508–514. doi:10.1016/s0003-3472(84)80288-2

    Google Scholar 

  • Fish FE (1995) Kinematics of ducklings swimming in formation – consequences of position. J Exper Zoo 273(1):1–11. doi:10.1002/jez.1402730102

    Article  Google Scholar 

  • Frank LG (1986) Social-organization of the spotted hyena Crocuta crocuta.2. Dominance and reproduction. Anim Behav 34:1510–1527. doi:10.1016/s0003-3472(86)80221-4

    Article  Google Scholar 

  • Gilbert C, Robertson G, Le Maho Y, Naito Y, Ancel A (2006) Huddling behavior in emperor penguins: dynamics of huddling. Physiol Behav 88(4–5):479–488. doi:10.1016/j.physbeh.2006.04.024

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, Ancel A (2010) One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev 85(3):545–569. doi:10.1111/j.1469-185X.2009.00115.x

    PubMed  Google Scholar 

  • Guhl AM, Collias NE, Allee WC (1945) Mating behavior and the social hierarchy in small flocks of white leghorns. Physiol Zool 18(4):365–390

    Article  Google Scholar 

  • Halley DJ (2001) Interspecific dominance and risk-taking in three species of corvid scavenger. J Yamashina Institute Ornithol 33:44–50

    Article  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311

    Article  CAS  PubMed  Google Scholar 

  • Hatchwell BJ, Sharp SP, Simeoni M, McGowan A (2009) Factors influencing overnight loss of body mass in the communal roosts of a social bird. Func Ecology 23(2):367–372. doi:10.1111/j.1365-2435.2008.01511.x

    Article  Google Scholar 

  • Helle T, Aspi J, Lempa K, Taskinen E (1992) Strategies to avoid biting flies by reindeer – field experiments with silhouette traps. Ann Zoo Fennici 29(2):69–74

    Google Scholar 

  • Hemelrijk CK, Kunz H (2005) Density distribution and size sorting in fish schools: an individual-based model. Behav Ecology 16(1):178–187. doi:10.1093/beheco/arh149

    Article  Google Scholar 

  • Herbert-Read JE, Buhl J, Hu F, Ward AJ, Sumpter DJ (2015) Initiation and spread of escape waves within animal groups. Royal Soc Open Sci 2(4):140355

    Article  Google Scholar 

  • Herskin J, Steffensen JF (1998) Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. J Fish Biol 53(2):366–376

    Article  Google Scholar 

  • Hirsch BT (2007) Costs and benefits of within-group spatial position: a feeding competition model. Quart Rev Biol 82(1):9–27

    Article  PubMed  Google Scholar 

  • Hirsch BT (2011) Within-group spatial position in ring-tailed coatis: balancing predation, feeding competition, and social competition. Behav Ecolo Soc 65(2):391–399. doi:10.1007/s00265-010-1056-3

    Article  Google Scholar 

  • Hirsch BT, Morrell LJ (2011) Measuring marginal predation in animal groups. Behav Ecol 22(3):648–656. doi:10.1093/beheco/arr026

    Article  Google Scholar 

  • Hogstad O (1987) It is expensive to be dominant. Auk 104(2):333–336

    Google Scholar 

  • Hogstad O (1988) Social rank and antipredator behavior of willow tits Parus montanus in winter flocks. Ibis 130(1):45–56. doi:10.1111/j.1474-919X.1988.tb00954.x

    Article  Google Scholar 

  • Hogstad O (1989) Subordination in mixed-age bird flocks – a removal study. Ibis 131(1):128–134. doi:10.1111/j.1474-919X.1989.tb02751.x

    Article  Google Scholar 

  • Hummel D (1995) Formation flight as an energy-saving mechanism. Isr J Zool 41(3):261–278

    Google Scholar 

  • Issa FA, Edwards DH (2006) Ritualized submission and the reduction of aggression in an invertebrate. Curr Biol 16(22):2217–2221. doi:10.1016/j.cub.2006.08.065

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen PJ, Johnsen GH (1988) Size-specific protection against predation by fish in swarming waterfleas, Bosmina longispina. Anim Behav 36:986–990. doi:10.1016/s0003-3472(88)80057-5

    Article  Google Scholar 

  • James R, Bennett PG, Krause J (2004) Geometry for mutualistic and selfish herds: the limited domain of danger. J Theor Biol 228(1):107–113. doi:10.1016/j.jtbi.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  • Keys GC, Dugatkin LA (1990) Flock size and position effects on vigilance, aggression, and prey capture in the European starling. Condor 92(1):151–159. doi:10.2307/1368393

    Article  Google Scholar 

  • King AJ, Wilson AM, Wilshin SD, Lowe J, Haddadi H, Hailes S, Morton AJ (2012) Selfish-herd behaviour of sheep under threat. Curr Biol 22:R561–R562

    Article  CAS  PubMed  Google Scholar 

  • Koivula K, Lahti K, Rytkonen S, Orell M (1994) Do subordinates expose themselves to predation – field experiments on feeding site selection by willow TITS. J Avian Biol 25(3):178–183. doi:10.2307/3677073

    Article  Google Scholar 

  • Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc Royal Soc B Biol Sci 266(1419):571–578

    Article  Google Scholar 

  • Krams I (1998) Rank-dependent fattening strategies of Willow Tit Parus montanus and Crested Tit P-cristatus mixed flock members. Ornis Fennica 75(1):19–26

    Google Scholar 

  • Krause J (1993a) The effect of schreckstoff on the shoaling behavior of the minnow – a test of Hamilton’s selfish herd theory. Anim Behav 45(5):1019–1024. doi:10.1006/anbe.1993.1119

    Article  Google Scholar 

  • Krause J (1993b) The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus) – a field-study. Oecologia 93(3):356–359

    Article  Google Scholar 

  • Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev Camb Philos Soc 69(2):187–206

    Article  CAS  PubMed  Google Scholar 

  • Krause J, Bumann D, Todt D (1992) Relationship between the position preference and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus). Behav Ecolo Soc 30(3–4):177–180

    Article  Google Scholar 

  • Krause J, Reeves P, Hoare D (1998a) Positioning behaviour in roach shoals: the role of body length and nutritional state. Behaviour 135:1031–1039

    Article  Google Scholar 

  • Krause J, Ruxton GD, Rubenstein D (1998b) Is there always an influence of shoal size on predator hunting success? J Fish Biol 52(3):494–501

    Article  Google Scholar 

  • Kruuk H (1964) Predators and antipredator behaviour of the black-headed gull (Larus ridibundus). Behav Suppl 11:1–129

    Google Scholar 

  • Lahti K (1998) Social dominance and survival in flocking passerine birds: a review with an emphasis on the Willow Tit Parus montanus. Ornis Fennica 75(1):1–17

    Google Scholar 

  • Lahti K, Koivula K, Orell M (1997) Dominance, daily activity and winter survival in willow tits: detrimental cost of long working hours? Behaviour 134:921–939. doi:10.1163/156853997x00232

    Article  Google Scholar 

  • Langen TA, Rabenold KN (1994) Dominance and diet selection in juncos. Behav Ecolo 5(3):334–338. doi:10.1093/beheco/5.3.334

    Article  Google Scholar 

  • Lissaman PB, Shollenberger CA (1970) Formation flight of birds. Science 168(3934):1003. doi:10.1126/science.168.3934.1003

    Article  CAS  PubMed  Google Scholar 

  • Lloyd PH, Rasa OAE (1989) Status, reproductive success and fitness in cape mountain zebra (equus-zebra-zebra). Behav Ecol Sociobiol 25(6):411–420. doi:10.1007/bf00300187

    Article  Google Scholar 

  • Morrell LJ, Ruxton GD, James R (2011) Spatial positioning in the selfish herd. Behav Ecolo 22(1):16–22. doi:10.1093/beheco/arq157

    Article  Google Scholar 

  • Napper CJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ (2013) Dominance, not kinship, determines individual position within the communal roosts of a cooperatively breeding bird. Behav Ecol Sociobiol 67(12):2029–2039. doi:10.1007/s00265-013-1613-7

    Article  Google Scholar 

  • Newson RM, Mella PNP, Franklin TE (1973) Observations on the numbers of the tick Rhipicephalus appendiculatus on the ears of zebu cattle in relation to hierarchical status in the herd. Tropl Anim Health Prod 5(4):281–283. doi:10.1007/bf02240430

    Article  CAS  Google Scholar 

  • O’Connell CP (1972) Interrelation of biting and filtering in feeding activity of northern anchovy (Engraulis mordax). J Fish Res Board Can 29(3):285

    Article  Google Scholar 

  • Okamura B (1986) Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 69(3):341–347. doi:10.1007/bf00377054

    Article  Google Scholar 

  • Ost M, Jaatinen K, Steele B (2007) Aggressive females seize central positions and show increased vigilance in brood-rearing coalitions of eiders. Anim Behav 73:239–247. doi:10.1016/j.anbehav.2006.04.010

    Article  Google Scholar 

  • Packer C, Collins DA, Sindimwo A, Goodall J (1995) Reproductive constraints on aggressive competition in female baboons. Nature 373(6509):60–63. doi:10.1038/373060a0

    Article  CAS  PubMed  Google Scholar 

  • Parrish JK (1989) Re-examining the selfish herd – are central fish safer? Anim Behav 38:1048–1053

    Article  Google Scholar 

  • Perry EF, Manolis JC, Andersen DE (2008) Reduced predation at interior nests in clustered all-purpose territories of least flycatchers (Empidonax minimus). Auk 125(3):643–650. doi:10.1525/auk.2008.07001

    Article  Google Scholar 

  • Petit DR, Bildstein KL (1987) Effect of group-size and location within the group on the foraging behavior of white ibises. Condor 89(3):602–609. doi:10.2307/1368649

    Article  Google Scholar 

  • Phillips RA, Furness RW, Stewart FM (1998) The influence of territory density on the vulnerability of Arctic skuas Stercorarius parasiticus to predation. Biol Conserv 86(1):21–31. doi:10.1016/s0006-3207(98)00007-x

    Article  Google Scholar 

  • Portugal SJ, Hubel TY, Fritz J, Heese S, Trobe D, Voelkl B, Hailes S, Wilson AM, Usherwood JR (2014) Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505(7483):399–402. doi:10.1038/nature12939

    Article  CAS  PubMed  Google Scholar 

  • Quinn JL, Cresswell W (2006) Testing domains of danger in the selfish herd: sparrowhawks target widely spaced redshanks in flocks. Proc Royal Soc B-Biol Sci 273(1600):2521–2526. doi:10.1098/rspb.2006.3612

    Article  Google Scholar 

  • Rands SA, Pettifor RA, Rowcliffe JM, Cowlishaw G (2006) Social foraging and dominance relationships: the effects of socially mediated interference. Behav Ecol Sociobiol 60(4):572–581. doi:10.1007/s00265-006-0202-4

    Article  Google Scholar 

  • Rayor LS, Uetz GW (1990) Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav Ecol Sociobiol 27(2):77–85. doi:10.1007/bf00168449

    Article  Google Scholar 

  • Rayor LS, Uetz GW (1993) Ontogenic shifts within the selfish herd – predation risk and foraging trade-offs change with age in colonial web-building spiders. Oecologia 95(1):1–8

    Article  Google Scholar 

  • Reebs SG, Saulnier N (1997) The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). Ethology 103(8):642–652

    Article  Google Scholar 

  • Rohwer S, Ewald PW (1981) The cost of dominance and advantage of subordination in a badge signaling system. Evolution 35(3):441–454. doi:10.2307/2408193

    Article  Google Scholar 

  • Romey WL (1995) Position preferences within groups – do whirligigs select positions which balance feeding opportunities with predator avoidance. Behav Ecol Sociobiol 37(3):195–200. doi:10.1007/bf00176717

    Article  Google Scholar 

  • Romey WL, Galbraith E (2008) Optimal group positioning after a predator attack: the influence of speed, sex, and satiation within mobile whirligig swarms. Behav Ecol 19(2):338–343. doi:10.1093/beheco/arm138

    Article  Google Scholar 

  • Romey WL, LaBuda S (2010) Predator type, not body condition, influences positioning within whirligig groups. Behav Ecol Sociobiol 64(4):665–673. doi:10.1007/s00265-009-0884-5

    Article  Google Scholar 

  • Romey WL, Wallace AC (2007) Sex and the selfish herd: sexual segregation within nonmating whirligig groups. Behav Ecol 18(5):910–915. doi:10.1093/beheco/arm057

    Article  Google Scholar 

  • Romey WL, Walston AR, Watt PJ (2008) Do 3-D predators attack the margins of 2-D selfish herds? Behav Ecol 19(1):74–78. doi:10.1093/beheco/arm105

    Article  Google Scholar 

  • Roskaft E, Jarvi T, Bakken M, Bech C, Reinertsen RE (1986) The relationship between social-status and resting metabolic-rate in great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). Anim Behav 34:838–842. doi:10.1016/s0003-3472(86)80069-0

    Article  Google Scholar 

  • Rowcliffe JM, Pettifor RA, Carbone C (2004) Foraging inequalities in large groups: quantifying depletion experienced by individuals in goose flocks. J Anim Ecol 73(1):97–108. doi:10.1111/j.1365-2656.2004.00783.x

    Article  Google Scholar 

  • Schneider KJ (1984) Dominance, predation, and optimal foraging in white-thorated sparrow flocks. Ecology 65(6):1820–1827. doi:10.2307/1937778

    Article  Google Scholar 

  • Slotow R, Rothstein SI (1995) Influence of social status, distance from cover, and group size on feeding and vigilance in white-crowned Sparrows. Auk 112(4):1024–1031

    Article  Google Scholar 

  • Stumbo AD, James CT, Goater CP, Wisenden BD (2012) Shoaling as an antiparasite defence in minnows (Pimephales promelas) exposed to trematode cercariae. J Anim Ecol 81(6):1319–1326. doi:10.1111/j.1365-2656.2012.02012.x

    Article  PubMed  Google Scholar 

  • Sueur C, Petit O, Deneubourg JL (2010) Short-term group fission processes in macaques: a social networking approach. J Exp Biol 213:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Svendsen JC, Skov J, Bildsoe M, Steffensen JF (2003) Intra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions. J Fish Biol 62(4):834–846. doi:10.1046/j.1095-8649.2003.00068.x

    Article  Google Scholar 

  • Swain DT, Couzin ID, Leonard NE (2015) Coordinated speed oscillations in schooling killifish enrich social communication. J Nonlinear Sci 25(5):1077–1109

    Article  Google Scholar 

  • Tenaza R (1971) Behavior and nesting success relative to nest location in adelie penguins (Pygoscelis adeliae). Condor 73(1):81. doi:10.2307/1366127

    Article  Google Scholar 

  • Usherwood JR, Stavrou M, Lowe JC, Roskilly K, Wilson AM (2011) Flying in a flock comes at a cost in pigeons. Nature 474(7352):494–497. doi:10.1038/nature10164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vehrencamp SL (1983) Optimal degree of skew in cooperative societies. Am Zool 23(2):327–335

    Article  Google Scholar 

  • Viscido SV, Wethey DS (2002) Quantitative analysis of fiddler crab flock movement: evidence for ‘selfish herd’ behaviour. Anim Behav 63:735–741. doi:10.1006/anbe.2001.1935

    Article  Google Scholar 

  • Voelkl B, Portugal SJ, Unsöld M, Usherwood JR, Wilson AM, Fritz J (2015) Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. Proc Natl Acad Sci 112(7):2115–2120. doi:10.1073/pnas.1413589112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker SE, Marshall SD, Rypstra AL, Taylor DH (1999) The effects of hunger on locomotory behaviour in two species of wolf spider (Araneae, Lycosidae). Anim Behav 58:515–520. doi:10.1006/anbe.1999.1180

    Article  PubMed  Google Scholar 

  • Webster MM, Hart PJB (2006a) Kleptoparasitic prey competition in shoaling fish: effects of familiarity and prey distribution. Behav Ecolo 17(6):959–964. doi:10.1093/beheco/arl037

    Article  Google Scholar 

  • Webster MS, Hixon MA (2000) Mechanisms and individual consequences of intraspecific competition in a coral-reef fish. Mar Ecol Prog Ser 196:187–194. doi:10.3354/meps196187

    Article  Google Scholar 

  • Weihs D (1973) Hydromechanics of fish schooling. Nature 241(5387):290–291. doi:10.1038/241290a0

    Article  Google Scholar 

  • Weimerskirch H, Martin J, Clerquin Y, Alexandre P, Jiraskova S (2001) Energy saving in flight formation – pelicans flying in a ‘V’ can glide for extended periods using the other birds’ air streams. Nature 413(6857):697–698. doi:10.1038/35099670

    Article  CAS  PubMed  Google Scholar 

  • Wittenberger GF, Hunt JL (1985) The adaptive significance of coloniality in birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology. Academic Press, New York

    Google Scholar 

  • Zitterbart DP, Wienecke B, Butler JP, Fabry B (2011) Coordinated movements prevent jamming in an emperor penguin huddle. Plos One 6(6). doi:10.1371/journal.pone.0020260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, A., Webster, M. (2016). Distributions of Costs and Benefits Within Groups. In: Sociality: The Behaviour of Group-Living Animals. Springer, Cham. https://doi.org/10.1007/978-3-319-28585-6_6

Download citation

Publish with us

Policies and ethics