Advertisement

Distributions of Costs and Benefits Within Groups

  • Ashley Ward
  • Mike Webster
Chapter

Abstract

The previous two chapters described how resources and risk affect the costs and benefits that group members obtain from sociality. However, not all group members necessarily obtain the same benefits, nor do all pay the same costs. The net benefit of group membership is typically skewed in favour of some individuals to the detriment of others. In some cases this skew may be extreme, so that it may pay some group members to leave the group, depending on the opportunities available outside the group. More often, however, all members of the group fare better than they might on their own, even if some do better than others. Furthermore, the benefits and costs are not fixed, so that those that obtain relative low rewards at one point in time may be able to improve their lot subsequently. There are two main predictors of these cost and benefit inequalities within groups: firstly, the position that an animal occupies within a group, relative to other group members, and, secondly, the position an animal occupies within a dominance hierarchy. These factors often interact, with dominant individuals taking up the most favoured positions at the expense of their subordinate social partners. In this chapter, we first examine the payoffs associated with different positions in animal groups; we then examine how animals are able to respond dynamically to these by adjusting their relative position in their group. Finally, we examine the constraints that animals may face on their ability to take up beneficial spatial positions within groups with particular reference to the existence of dominance hierarchies.

Keywords

Predation Risk Dominance Hierarchy Prey Animal Dominant Individual High Intake Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrahams MV, Colgan PW (1985) Risk of predation, hydrodynamic efficiency and their influence on school structure. Environ Biol Fishes 13(3):195–202. doi: 10.1007/bf00000931 CrossRefGoogle Scholar
  2. Alberts JR (1978) Huddling by rat pups – group behavioral mechanisms of temperature regulation and energy-conservation. J Comp Physiol Psychol 92(2):231–245. doi: 10.1037/h0077459 PubMedCrossRefGoogle Scholar
  3. Armstrong EA, Whitehouse HLK (1977) Behavioral adaptations of wren (troglodytes-troglodytes). Biol Rev Camb Philos Soc 52(2):235–294. doi: 10.1111/j.1469-185X.1977.tb01352.x CrossRefGoogle Scholar
  4. Bajec IL, Heppner FH (2009) Organized flight in birds. Anim Behav 78(4):777–789. doi: 10.1016/j.anbehav.2009.07.007 CrossRefGoogle Scholar
  5. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76:201–215. doi: 10.1016/j.anbehav.2008.02.004 CrossRefGoogle Scholar
  6. Bautista A, Garcia-Torres E, Martinez-Gomez M, Hudson R (2008) Do newborn domestic rabbits Oryctolagus cuniculus compete for thermally advantageous positions in the litter huddle? Behav Ecol Sociobiol 62(3):331–339. doi: 10.1007/s00265-007-0420-4 CrossRefGoogle Scholar
  7. Beauchamp G (2013) Social foragers adopt a riskier foraging mode in the centre of their groups. Biol Lett 9(6). doi: 10.1098/rsbl.2013.0528
  8. Beauchamp G (2014) Social predation: how group living benefits predators and prey. Academic Press, AmsterdamGoogle Scholar
  9. Black JM, Carbone C, Wells RL, Owen M (1992) Foraging dynamics in goose flocks – the cost-of-living on the edge. Anim Behav 44(1):41–50. doi: 10.1016/s0003-3472(05)80752-3 CrossRefGoogle Scholar
  10. Bosiger YJ, McCormick MI (2014) Temporal links in daily activity patterns between coral reef predators and their prey. Plos One 9(10). doi: 10.1371/journal.pone.0111723
  11. Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762. doi: 10.1016/j.cub.2010.08.041 PubMedCrossRefGoogle Scholar
  12. Broly P, Devigne L, Deneubourg JL, Devigne C (2014) Effects of group size on aggregation against desiccation in woodlice (Isopoda: Oniscidea). Physiol Entomol 39(2):165–171. doi: 10.1111/phen.12060 CrossRefGoogle Scholar
  13. Brunton DH (1997) Impacts of predators: Center nests are less successful than edge nests in a large nesting colony of Least Terns. Condor 99(2):372–380. doi: 10.2307/1369943 CrossRefGoogle Scholar
  14. Bryant DM, Newton AV (1994) Metabolic costs of dominance in dippers, Cinclus cinclus. Anim Behav 48(2):447–455. doi: 10.1006/anbe.1994.1258 CrossRefGoogle Scholar
  15. Bumann D, Krause J, Rubenstein D (1997) Mortality risk of spatial positions in animal groups: The danger of being in the front. Behaviour 134:1063–1076CrossRefGoogle Scholar
  16. Burgerhout E, Tudorache C, Brittijn SA, Palstra AP, Dirks RP, van den Thillart GE (2013) Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. J Exp Mar Biol Ecol 448:66–71CrossRefGoogle Scholar
  17. Burns ALJ, Herbert-Read JE, Morrell LJ, Ward AJW (2012) Consistency of leadership in Shoals of Mosquitofish (Gambusia holbrooki) in novel and in familiar environments. PLoS One 7(5):e36567. doi: 10.1371/journal.pone.0036567 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Calf K, Adams N, Slotow R (2002) Dominance and huddling behaviour in Bronze Mannikin Lonchura cucullata flocks. Ibis 144(3):488–493. doi: 10.1046/j.1474-919X.2002.00039.x CrossRefGoogle Scholar
  19. Chungu H, Speybroeck N, Pegram RG, Berkvens DL (2001) Rhipicephalus appendiculatus burdens on cattle in relation to age and sex of the host. Tropicultura 19(1):34–36Google Scholar
  20. Coleman RA (2010) Limpet aggregation does not alter desiccation in the limpet Cellana tramoserica. J Exp Mar Biol Ecolo 386(1–2):113–118. doi: 10.1016/j.jembe.2010.02.011 CrossRefGoogle Scholar
  21. Couzin ID, Krause J (2003) Self-organization and collective behavior in vertebrates. In: Advances in the study of behavior, vol 32. pp 1–75Google Scholar
  22. de Waal F (1982) Chimpanzee politics. Power and sex among apes. Chimpanzee politics. Power and sex among apesGoogle Scholar
  23. DeBlois EM, Rose GA (1996) Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua). Oecologia 108(1):192–196CrossRefGoogle Scholar
  24. Desrochers A (1989) Sex, dominance, and microhabitat use in wintering black-capped chickadees – a field experiment. Ecology 70(3):636–645. doi: 10.2307/1940215 CrossRefGoogle Scholar
  25. Di Blanco Y, Hirsch BT (2006) Determinants of vigilance behavior in the ring-tailed coati (Nasua nasua): the importance of within-group spatial position. Behav Ecol Sociobiol 61(2):173–182. doi: 10.1007/s00265-006-0248-3 CrossRefGoogle Scholar
  26. Doonan IJ, Bull B, Coombs RF (2003) Star acoustic surveys of localized fish aggregations. Ices J Marine Sci 60(1):132–146. doi: 10.1006/jmsc.2002.1331 CrossRefGoogle Scholar
  27. Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Tr Royal Soc B Biol Sci 357:1539–1547CrossRefGoogle Scholar
  28. Dukas R, Kamil A (2000) The cost of limited attention in blue jays. Behav Ecolo 11:502–506CrossRefGoogle Scholar
  29. Ekman J (1986) Tree use and predator vulnerability of wintering passerines. Ornis Scan 17(3):261–267. doi: 10.2307/3676836 CrossRefGoogle Scholar
  30. Ekman J (1987) Exposure and time use in willow tit flocks – the cost of subordination. Anim Behav 35:445–452. doi: 10.1016/s0003-3472(87)80269-5 CrossRefGoogle Scholar
  31. Ekman JB, Askenmo CEH (1984) Social rank and habitat use in willow TIT groups. Anim Behav 32(MAY):508–514. doi: 10.1016/s0003-3472(84)80288-2
  32. Fish FE (1995) Kinematics of ducklings swimming in formation – consequences of position. J Exper Zoo 273(1):1–11. doi: 10.1002/jez.1402730102 CrossRefGoogle Scholar
  33. Frank LG (1986) Social-organization of the spotted hyena Crocuta crocuta.2. Dominance and reproduction. Anim Behav 34:1510–1527. doi: 10.1016/s0003-3472(86)80221-4 CrossRefGoogle Scholar
  34. Gilbert C, Robertson G, Le Maho Y, Naito Y, Ancel A (2006) Huddling behavior in emperor penguins: dynamics of huddling. Physiol Behav 88(4–5):479–488. doi: 10.1016/j.physbeh.2006.04.024 PubMedCrossRefGoogle Scholar
  35. Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, Ancel A (2010) One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev 85(3):545–569. doi: 10.1111/j.1469-185X.2009.00115.x PubMedGoogle Scholar
  36. Guhl AM, Collias NE, Allee WC (1945) Mating behavior and the social hierarchy in small flocks of white leghorns. Physiol Zool 18(4):365–390CrossRefGoogle Scholar
  37. Halley DJ (2001) Interspecific dominance and risk-taking in three species of corvid scavenger. J Yamashina Institute Ornithol 33:44–50CrossRefGoogle Scholar
  38. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311PubMedCrossRefGoogle Scholar
  39. Hatchwell BJ, Sharp SP, Simeoni M, McGowan A (2009) Factors influencing overnight loss of body mass in the communal roosts of a social bird. Func Ecology 23(2):367–372. doi: 10.1111/j.1365-2435.2008.01511.x CrossRefGoogle Scholar
  40. Helle T, Aspi J, Lempa K, Taskinen E (1992) Strategies to avoid biting flies by reindeer – field experiments with silhouette traps. Ann Zoo Fennici 29(2):69–74Google Scholar
  41. Hemelrijk CK, Kunz H (2005) Density distribution and size sorting in fish schools: an individual-based model. Behav Ecology 16(1):178–187. doi: 10.1093/beheco/arh149 CrossRefGoogle Scholar
  42. Herbert-Read JE, Buhl J, Hu F, Ward AJ, Sumpter DJ (2015) Initiation and spread of escape waves within animal groups. Royal Soc Open Sci 2(4):140355CrossRefGoogle Scholar
  43. Herskin J, Steffensen JF (1998) Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. J Fish Biol 53(2):366–376CrossRefGoogle Scholar
  44. Hirsch BT (2007) Costs and benefits of within-group spatial position: a feeding competition model. Quart Rev Biol 82(1):9–27PubMedCrossRefGoogle Scholar
  45. Hirsch BT (2011) Within-group spatial position in ring-tailed coatis: balancing predation, feeding competition, and social competition. Behav Ecolo Soc 65(2):391–399. doi: 10.1007/s00265-010-1056-3 CrossRefGoogle Scholar
  46. Hirsch BT, Morrell LJ (2011) Measuring marginal predation in animal groups. Behav Ecol 22(3):648–656. doi: 10.1093/beheco/arr026 CrossRefGoogle Scholar
  47. Hogstad O (1987) It is expensive to be dominant. Auk 104(2):333–336Google Scholar
  48. Hogstad O (1988) Social rank and antipredator behavior of willow tits Parus montanus in winter flocks. Ibis 130(1):45–56. doi: 10.1111/j.1474-919X.1988.tb00954.x CrossRefGoogle Scholar
  49. Hogstad O (1989) Subordination in mixed-age bird flocks – a removal study. Ibis 131(1):128–134. doi: 10.1111/j.1474-919X.1989.tb02751.x CrossRefGoogle Scholar
  50. Hummel D (1995) Formation flight as an energy-saving mechanism. Isr J Zool 41(3):261–278Google Scholar
  51. Issa FA, Edwards DH (2006) Ritualized submission and the reduction of aggression in an invertebrate. Curr Biol 16(22):2217–2221. doi: 10.1016/j.cub.2006.08.065 PubMedCrossRefGoogle Scholar
  52. Jakobsen PJ, Johnsen GH (1988) Size-specific protection against predation by fish in swarming waterfleas, Bosmina longispina. Anim Behav 36:986–990. doi: 10.1016/s0003-3472(88)80057-5 CrossRefGoogle Scholar
  53. James R, Bennett PG, Krause J (2004) Geometry for mutualistic and selfish herds: the limited domain of danger. J Theor Biol 228(1):107–113. doi: 10.1016/j.jtbi.2003.12.005 PubMedCrossRefGoogle Scholar
  54. Keys GC, Dugatkin LA (1990) Flock size and position effects on vigilance, aggression, and prey capture in the European starling. Condor 92(1):151–159. doi: 10.2307/1368393 CrossRefGoogle Scholar
  55. King AJ, Wilson AM, Wilshin SD, Lowe J, Haddadi H, Hailes S, Morton AJ (2012) Selfish-herd behaviour of sheep under threat. Curr Biol 22:R561–R562PubMedCrossRefGoogle Scholar
  56. Koivula K, Lahti K, Rytkonen S, Orell M (1994) Do subordinates expose themselves to predation – field experiments on feeding site selection by willow TITS. J Avian Biol 25(3):178–183. doi: 10.2307/3677073 CrossRefGoogle Scholar
  57. Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc Royal Soc B Biol Sci 266(1419):571–578CrossRefGoogle Scholar
  58. Krams I (1998) Rank-dependent fattening strategies of Willow Tit Parus montanus and Crested Tit P-cristatus mixed flock members. Ornis Fennica 75(1):19–26Google Scholar
  59. Krause J (1993a) The effect of schreckstoff on the shoaling behavior of the minnow – a test of Hamilton’s selfish herd theory. Anim Behav 45(5):1019–1024. doi: 10.1006/anbe.1993.1119 CrossRefGoogle Scholar
  60. Krause J (1993b) The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus) – a field-study. Oecologia 93(3):356–359CrossRefGoogle Scholar
  61. Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev Camb Philos Soc 69(2):187–206PubMedCrossRefGoogle Scholar
  62. Krause J, Bumann D, Todt D (1992) Relationship between the position preference and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus). Behav Ecolo Soc 30(3–4):177–180CrossRefGoogle Scholar
  63. Krause J, Reeves P, Hoare D (1998a) Positioning behaviour in roach shoals: the role of body length and nutritional state. Behaviour 135:1031–1039CrossRefGoogle Scholar
  64. Krause J, Ruxton GD, Rubenstein D (1998b) Is there always an influence of shoal size on predator hunting success? J Fish Biol 52(3):494–501CrossRefGoogle Scholar
  65. Kruuk H (1964) Predators and antipredator behaviour of the black-headed gull (Larus ridibundus). Behav Suppl 11:1–129Google Scholar
  66. Lahti K (1998) Social dominance and survival in flocking passerine birds: a review with an emphasis on the Willow Tit Parus montanus. Ornis Fennica 75(1):1–17Google Scholar
  67. Lahti K, Koivula K, Orell M (1997) Dominance, daily activity and winter survival in willow tits: detrimental cost of long working hours? Behaviour 134:921–939. doi: 10.1163/156853997x00232 CrossRefGoogle Scholar
  68. Langen TA, Rabenold KN (1994) Dominance and diet selection in juncos. Behav Ecolo 5(3):334–338. doi: 10.1093/beheco/5.3.334 CrossRefGoogle Scholar
  69. Lissaman PB, Shollenberger CA (1970) Formation flight of birds. Science 168(3934):1003. doi: 10.1126/science.168.3934.1003 PubMedCrossRefGoogle Scholar
  70. Lloyd PH, Rasa OAE (1989) Status, reproductive success and fitness in cape mountain zebra (equus-zebra-zebra). Behav Ecol Sociobiol 25(6):411–420. doi: 10.1007/bf00300187 CrossRefGoogle Scholar
  71. Morrell LJ, Ruxton GD, James R (2011) Spatial positioning in the selfish herd. Behav Ecolo 22(1):16–22. doi: 10.1093/beheco/arq157 CrossRefGoogle Scholar
  72. Napper CJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ (2013) Dominance, not kinship, determines individual position within the communal roosts of a cooperatively breeding bird. Behav Ecol Sociobiol 67(12):2029–2039. doi: 10.1007/s00265-013-1613-7 CrossRefGoogle Scholar
  73. Newson RM, Mella PNP, Franklin TE (1973) Observations on the numbers of the tick Rhipicephalus appendiculatus on the ears of zebu cattle in relation to hierarchical status in the herd. Tropl Anim Health Prod 5(4):281–283. doi: 10.1007/bf02240430 CrossRefGoogle Scholar
  74. O’Connell CP (1972) Interrelation of biting and filtering in feeding activity of northern anchovy (Engraulis mordax). J Fish Res Board Can 29(3):285CrossRefGoogle Scholar
  75. Okamura B (1986) Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 69(3):341–347. doi: 10.1007/bf00377054 CrossRefGoogle Scholar
  76. Ost M, Jaatinen K, Steele B (2007) Aggressive females seize central positions and show increased vigilance in brood-rearing coalitions of eiders. Anim Behav 73:239–247. doi: 10.1016/j.anbehav.2006.04.010 CrossRefGoogle Scholar
  77. Packer C, Collins DA, Sindimwo A, Goodall J (1995) Reproductive constraints on aggressive competition in female baboons. Nature 373(6509):60–63. doi: 10.1038/373060a0 PubMedCrossRefGoogle Scholar
  78. Parrish JK (1989) Re-examining the selfish herd – are central fish safer? Anim Behav 38:1048–1053CrossRefGoogle Scholar
  79. Perry EF, Manolis JC, Andersen DE (2008) Reduced predation at interior nests in clustered all-purpose territories of least flycatchers (Empidonax minimus). Auk 125(3):643–650. doi: 10.1525/auk.2008.07001 CrossRefGoogle Scholar
  80. Petit DR, Bildstein KL (1987) Effect of group-size and location within the group on the foraging behavior of white ibises. Condor 89(3):602–609. doi: 10.2307/1368649 CrossRefGoogle Scholar
  81. Phillips RA, Furness RW, Stewart FM (1998) The influence of territory density on the vulnerability of Arctic skuas Stercorarius parasiticus to predation. Biol Conserv 86(1):21–31. doi: 10.1016/s0006-3207(98)00007-x CrossRefGoogle Scholar
  82. Portugal SJ, Hubel TY, Fritz J, Heese S, Trobe D, Voelkl B, Hailes S, Wilson AM, Usherwood JR (2014) Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505(7483):399–402. doi: 10.1038/nature12939 PubMedCrossRefGoogle Scholar
  83. Quinn JL, Cresswell W (2006) Testing domains of danger in the selfish herd: sparrowhawks target widely spaced redshanks in flocks. Proc Royal Soc B-Biol Sci 273(1600):2521–2526. doi: 10.1098/rspb.2006.3612 CrossRefGoogle Scholar
  84. Rands SA, Pettifor RA, Rowcliffe JM, Cowlishaw G (2006) Social foraging and dominance relationships: the effects of socially mediated interference. Behav Ecol Sociobiol 60(4):572–581. doi: 10.1007/s00265-006-0202-4 CrossRefGoogle Scholar
  85. Rayor LS, Uetz GW (1990) Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav Ecol Sociobiol 27(2):77–85. doi: 10.1007/bf00168449 CrossRefGoogle Scholar
  86. Rayor LS, Uetz GW (1993) Ontogenic shifts within the selfish herd – predation risk and foraging trade-offs change with age in colonial web-building spiders. Oecologia 95(1):1–8CrossRefGoogle Scholar
  87. Reebs SG, Saulnier N (1997) The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). Ethology 103(8):642–652CrossRefGoogle Scholar
  88. Rohwer S, Ewald PW (1981) The cost of dominance and advantage of subordination in a badge signaling system. Evolution 35(3):441–454. doi: 10.2307/2408193 CrossRefGoogle Scholar
  89. Romey WL (1995) Position preferences within groups – do whirligigs select positions which balance feeding opportunities with predator avoidance. Behav Ecol Sociobiol 37(3):195–200. doi: 10.1007/bf00176717 CrossRefGoogle Scholar
  90. Romey WL, Galbraith E (2008) Optimal group positioning after a predator attack: the influence of speed, sex, and satiation within mobile whirligig swarms. Behav Ecol 19(2):338–343. doi: 10.1093/beheco/arm138 CrossRefGoogle Scholar
  91. Romey WL, LaBuda S (2010) Predator type, not body condition, influences positioning within whirligig groups. Behav Ecol Sociobiol 64(4):665–673. doi: 10.1007/s00265-009-0884-5 CrossRefGoogle Scholar
  92. Romey WL, Wallace AC (2007) Sex and the selfish herd: sexual segregation within nonmating whirligig groups. Behav Ecol 18(5):910–915. doi: 10.1093/beheco/arm057 CrossRefGoogle Scholar
  93. Romey WL, Walston AR, Watt PJ (2008) Do 3-D predators attack the margins of 2-D selfish herds? Behav Ecol 19(1):74–78. doi: 10.1093/beheco/arm105 CrossRefGoogle Scholar
  94. Roskaft E, Jarvi T, Bakken M, Bech C, Reinertsen RE (1986) The relationship between social-status and resting metabolic-rate in great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). Anim Behav 34:838–842. doi: 10.1016/s0003-3472(86)80069-0 CrossRefGoogle Scholar
  95. Rowcliffe JM, Pettifor RA, Carbone C (2004) Foraging inequalities in large groups: quantifying depletion experienced by individuals in goose flocks. J Anim Ecol 73(1):97–108. doi: 10.1111/j.1365-2656.2004.00783.x CrossRefGoogle Scholar
  96. Schneider KJ (1984) Dominance, predation, and optimal foraging in white-thorated sparrow flocks. Ecology 65(6):1820–1827. doi: 10.2307/1937778 CrossRefGoogle Scholar
  97. Slotow R, Rothstein SI (1995) Influence of social status, distance from cover, and group size on feeding and vigilance in white-crowned Sparrows. Auk 112(4):1024–1031CrossRefGoogle Scholar
  98. Stumbo AD, James CT, Goater CP, Wisenden BD (2012) Shoaling as an antiparasite defence in minnows (Pimephales promelas) exposed to trematode cercariae. J Anim Ecol 81(6):1319–1326. doi: 10.1111/j.1365-2656.2012.02012.x PubMedCrossRefGoogle Scholar
  99. Sueur C, Petit O, Deneubourg JL (2010) Short-term group fission processes in macaques: a social networking approach. J Exp Biol 213:1338–1346PubMedCrossRefGoogle Scholar
  100. Svendsen JC, Skov J, Bildsoe M, Steffensen JF (2003) Intra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions. J Fish Biol 62(4):834–846. doi: 10.1046/j.1095-8649.2003.00068.x CrossRefGoogle Scholar
  101. Swain DT, Couzin ID, Leonard NE (2015) Coordinated speed oscillations in schooling killifish enrich social communication. J Nonlinear Sci 25(5):1077–1109CrossRefGoogle Scholar
  102. Tenaza R (1971) Behavior and nesting success relative to nest location in adelie penguins (Pygoscelis adeliae). Condor 73(1):81. doi: 10.2307/1366127 CrossRefGoogle Scholar
  103. Usherwood JR, Stavrou M, Lowe JC, Roskilly K, Wilson AM (2011) Flying in a flock comes at a cost in pigeons. Nature 474(7352):494–497. doi: 10.1038/nature10164 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Vehrencamp SL (1983) Optimal degree of skew in cooperative societies. Am Zool 23(2):327–335CrossRefGoogle Scholar
  105. Viscido SV, Wethey DS (2002) Quantitative analysis of fiddler crab flock movement: evidence for ‘selfish herd’ behaviour. Anim Behav 63:735–741. doi: 10.1006/anbe.2001.1935 CrossRefGoogle Scholar
  106. Voelkl B, Portugal SJ, Unsöld M, Usherwood JR, Wilson AM, Fritz J (2015) Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. Proc Natl Acad Sci 112(7):2115–2120. doi: 10.1073/pnas.1413589112 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Walker SE, Marshall SD, Rypstra AL, Taylor DH (1999) The effects of hunger on locomotory behaviour in two species of wolf spider (Araneae, Lycosidae). Anim Behav 58:515–520. doi: 10.1006/anbe.1999.1180 PubMedCrossRefGoogle Scholar
  108. Webster MM, Hart PJB (2006a) Kleptoparasitic prey competition in shoaling fish: effects of familiarity and prey distribution. Behav Ecolo 17(6):959–964. doi: 10.1093/beheco/arl037 CrossRefGoogle Scholar
  109. Webster MS, Hixon MA (2000) Mechanisms and individual consequences of intraspecific competition in a coral-reef fish. Mar Ecol Prog Ser 196:187–194. doi: 10.3354/meps196187 CrossRefGoogle Scholar
  110. Weihs D (1973) Hydromechanics of fish schooling. Nature 241(5387):290–291. doi: 10.1038/241290a0 CrossRefGoogle Scholar
  111. Weimerskirch H, Martin J, Clerquin Y, Alexandre P, Jiraskova S (2001) Energy saving in flight formation – pelicans flying in a ‘V’ can glide for extended periods using the other birds’ air streams. Nature 413(6857):697–698. doi: 10.1038/35099670 PubMedCrossRefGoogle Scholar
  112. Wittenberger GF, Hunt JL (1985) The adaptive significance of coloniality in birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology. Academic Press, New YorkGoogle Scholar
  113. Zitterbart DP, Wienecke B, Butler JP, Fabry B (2011) Coordinated movements prevent jamming in an emperor penguin huddle. Plos One 6(6). doi: 10.1371/journal.pone.0020260

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ashley Ward
    • 1
  • Mike Webster
    • 2
  1. 1.School of Life and Environmental SciencesThe University of SydneySydneyAustralia
  2. 2.School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations