Attraction, Alignment and Repulsion: How Groups Form and How They Function

  • Ashley Ward
  • Mike Webster


Aggregations of animals provide arguably the most dramatic sights in the natural world. One reason for this is their scale: some animal aggregations can be truly huge. Krill swarms can be visible from space, vast shoals of fish that measure kilometres in length and dense, wheeling clouds of starlings so enormous that they seem to obliterate the sun. But beyond scale, an additional factor contributing to the spectacle is the sense in which the many individual animals appear to be acting with unanimity of purpose. The observer is first transfixed by the sight and then questions occur: Why have they gathered here in such numbers? How do the animals behave in such a coordinated way? Our understanding of the first question is reasonably well developed and there is a rich literature concerned with the means by which animals are socially attracted to one another and subsequently coalesce into groups. Answers to the second question have proven much more difficult to find, although the question has caught the imagination of naturalists and scientists alike for centuries. Somehow, the individuals in the group seem to act in unison. They turn together, they flow around obstacles, and they move as one. Their coordination is amazing – as though some centralised controller dictates all movement. Until relatively recently – midway through the twentieth century – it was an established idea that group members were capable of some form of collective telepathy, or ‘thought transference’, allowing each to coordinate its actions with the collective or to follow leadership initiatives. But while this idea has some appeal, it is an illusion. Recent years have seen breakthroughs in our understanding of how repeated interactions between animals can produce the observed patterns. This chapter examines the current state of our knowledge on the mechanisms underlying social aggregations and collective behaviour.


Collective Behaviour Collective Motion Repulsion Zone Focal Fish Social Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Helbing D, Vicsek T (1999) Optimal self-organization. New J Phys 1. doi: 10.1088/1367-2630/1/1/313
  2. Abrahams MV, Colgan PW (1985) Risk of predation, hydrodynamic efficiency and their influence on school structure. Environ Biol Fishes 13(3):195–202. doi: 10.1007/bf00000931 CrossRefGoogle Scholar
  3. Ame JM, Rivault C, Deneubourg JL (2004) Cockroach aggregation based on strain odour recognition. Anim Behav 68:793–801. doi: 10.1016/j.anbehav.2004.01.009 CrossRefGoogle Scholar
  4. Anderson C (2002) Self-organization in relation to several similar concepts: are the boundaries to self-organization indistinct? Bio B 202(3):247–255. doi: 10.2307/1543475 CrossRefGoogle Scholar
  5. Aoki I (1982) A simulation study on the schooling mechanism in fish. B Jpn Soc Sci Fish 48(8):1081–1088CrossRefGoogle Scholar
  6. Aoki I, Inagaki T (1988) Photographic observations on the behavior of Japanese anchovy engraulis-japonica at night in the sea. Mar Ecol Prog Ser 43(3):213–221. doi: 10.3354/meps043213 CrossRefGoogle Scholar
  7. Armstrong EA, Whitehouse HLK (1977) Behavioral adaptations of wren (troglodytes-troglodytes). Biol Rev Camb Philos Soc 52(2):235–294. doi: 10.1111/j.1469-185X.1977.tb01352.x CrossRefGoogle Scholar
  8. Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S, Parisi L, Pohl O, Rossaro B, Shen E, Silvestri E, Viale M (2014) Collective behaviour without collective order in wild swarms of midges. Plos Comp Biol 10(7). doi: 10.1371/journal.pcbi.1003697
  9. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76:201–215. doi: 10.1016/j.anbehav.2008.02.004 CrossRefGoogle Scholar
  10. Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18(10):735–739. doi: 10.1016/j.cub.2008.04.035 PubMedCrossRefGoogle Scholar
  11. Bazazi S, Ioannou CC, Simpson SJ, Sword GA, Torney CJ, Lorch PD, Couzin ID (2010) The social context of cannibalism in migratory bands of the Mormon Cricket. Plos One 5(12). doi: 10.1371/journal.pone.0015118
  12. Becco C, Vandewalle N, Delcourt J, Poncin P (2006) Experimental evidences of a structural and dynamical transition in fish school. Phy A Stat Mech Appli 367:487–493. doi: 10.1016/j.physa.2005.11.041 CrossRefGoogle Scholar
  13. Beckers R, Deneubourg JL, Goss S (1992a) Trail laying behavior during food recruitment in the ant Lasius niger (L). Insect Soc 39(1):59–72. doi: 10.1007/bf01240531 CrossRefGoogle Scholar
  14. Beckers R, Deneubourg JL, Goss S (1992b) Trails and u-turns in the selection of a path by the ant Lasius niger. J Theor Biol 159(4):397–415. doi: 10.1016/s0022-5193(05)80686-1 CrossRefGoogle Scholar
  15. Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID (2013) Emergent Sensing of Complex Environments by Mobile Animal Groups. Science 339(6119):574–576. doi: 10.1126/science.1225883 PubMedCrossRefGoogle Scholar
  16. Bode NWF, Faria JJ, Franks DW, Krause J, Wood AJ (2010) How perceived threat increases synchronization in collectively moving animal groups. Proc Royal Soc B Bio Sci 277(1697):3065–3070. doi: 10.1098/rspb.2010.0855 CrossRefGoogle Scholar
  17. Bode NWF, Wood AJ, Franks DW (2011a) The impact of social networks on animal collective motion. Anim Behav 82(1):29–38. doi: 10.1016/j.anbehav.2011.04.011 CrossRefGoogle Scholar
  18. Bode NWF, Wood AJ, Franks DW (2011b) Social networks and models for collective motion in animals. Behav Ecol Sociobiol 65:117–130. doi: 10.1007/s00265-010-1111-0 CrossRefGoogle Scholar
  19. Boi S, Couzin ID, Del Buono N, Franks NR, Britton NF (1999) Coupled oscillators and activity waves in ant colonies. Proc Royal Soc B Bio Sci 266(1417):371–378CrossRefGoogle Scholar
  20. Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12(5):188–193. doi: 10.1016/s0169-5347(97)01048-3 PubMedCrossRefGoogle Scholar
  21. Breder CM (1951) Studies on the structure of the fish school. B Am Mus Nat Hist 98(1):1–27Google Scholar
  22. Breder CM (1954) Equations descriptive of fish schools and other animal aggregations. Ecology 35(3):361–370. doi: 10.2307/1930099 CrossRefGoogle Scholar
  23. Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762. doi: 10.1016/j.cub.2010.08.041 PubMedCrossRefGoogle Scholar
  24. Buck J, Buck E (1976) Synchronous fireflies. Sci Am 234(5):74–85PubMedCrossRefGoogle Scholar
  25. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312(5778):1402–1406. doi: 10.1126/science.1125142 PubMedCrossRefGoogle Scholar
  26. Buhl J, Sword GA, Clissold FJ, Simpson SJ (2011) Group structure in locust migratory bands. Behav Ecol Sociobiol 65(2):265–273. doi: 10.1007/s00265-010-1041-x CrossRefGoogle Scholar
  27. Buhl J, Sword GA, Simpson SJ (2012) Using field data to test locust migratory band collective movement models. Interface Focus 2(6):757–763. doi: 10.1098/rsfs.2012.0024 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bumann D, Krause J, Rubenstein D (1997) Mortality risk of spatial positions in animal groups: The danger of being in the front. Behaviour 134:1063–1076CrossRefGoogle Scholar
  29. Buxton RT, Jones IL (2012) An experimental study of social attraction in two species of storm petrel by acoustic and olfactory cues. Condor 114(4):733–743. doi: 10.1525/cond.2012.110091 CrossRefGoogle Scholar
  30. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  31. Chaverri G, Gillam EH, Vonhof MJ (2010) Social calls used by a leaf-roosting bat to signal location. Biol Lett 6(4):441–444. doi: 10.1098/rsbl.2009.0964 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cole BJ (1991) Short-term activity cycles in ants – generation of periodicity by worker interaction. Am Nat 137(2):244–259. doi: 10.1086/285156 CrossRefGoogle Scholar
  33. Conradt L, Roper TJ (2000) Activity synchrony and social cohesion: a fission-fusion model. Proc Royal Soc Lon Series B Bio Sci 267:2213–2218CrossRefGoogle Scholar
  34. Conradt L, Roper TJ (2009) Conflicts of interest and the evolution of decision sharing. Philos Tr Royal Soc B Biol Sci 364(1518):807–819. doi: 10.1098/rstb.2008.0257 CrossRefGoogle Scholar
  35. Couzin ID, Franks NR (2003) Self-organized lane formation and optimized traffic flow in army ants. Pro Royal Soc Lon B Biol Sci 270(1511):139–146. doi: 10.1098/rspb.2002.2210 CrossRefGoogle Scholar
  36. Couzin ID, Krause J (2003) Self-organization and collective behavior in vertebrates. In: Advances in the study of behavior, vol 32. pp 1–75Google Scholar
  37. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11. doi: 10.1006/yjtbi.3065 PubMedCrossRefGoogle Scholar
  38. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513–516. doi: 10.1038/nature03236 PubMedCrossRefGoogle Scholar
  39. Cox MD, Blanchard GB (2000) Gaseous templates in ant nests. J Theor Biol 204(2):223–238. doi: 10.1006/jtbi.2000.2010 PubMedCrossRefGoogle Scholar
  40. Crofton HD (1958) Nematode parasite populations in sheep on lowland farms.6. sheep behaviour and nematode infections. Parasitology 48(3–4):251–260PubMedCrossRefGoogle Scholar
  41. Cullen JM, Shaw E, Baldwin HA (1965) Methods for measuring 3-dimensional structure of fish schools. Animal Behaviour 13(4):534. doi: 10.1016/0003-3472(65)90117-x PubMedCrossRefGoogle Scholar
  42. Czirok A, Vicsek T (2000) Collective behavior of interacting self-propelled particles. Phys A Stat Mech Appl 281(1–4):17–29. doi: 10.1016/s0378-4371(00)00013-3 CrossRefGoogle Scholar
  43. Czirok A, Vicsek M, Vicsek T (1999) Collective motion of organisms in three dimensions. Phys A Stat Mech Appl 264(1–2):299–304. doi: 10.1016/s0378-4371(98)00468-3 CrossRefGoogle Scholar
  44. Dell AI, Bender JA, Branson K, Couzin ID, de Polavieja GG, Noldus L, Perez-Escudero A, Perona P, Straw AD, Wikelski M, Brose U (2014) Automated image-based tracking and its application in ecology. Trends Ecol Evol 29(7):417–428. doi: 10.1016/j.tree.2014.05.004 PubMedCrossRefGoogle Scholar
  45. Deutsch A, Theraulaz G, Vicsek T (2012) Collective motion in biological systems. Interface Focus 2(6):689–692. doi: 10.1098/rsfs.2012.0048 PubMedCentralCrossRefGoogle Scholar
  46. Dill LM, Dunbrack RL, Major PF (1981) A new stereophotographic technique for analyzing the three-dimensional structure of fish schools. Environ Biol Fishes 6:7–13CrossRefGoogle Scholar
  47. Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, CambridgeGoogle Scholar
  48. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41. doi: 10.1109/3477.484436 PubMedCrossRefGoogle Scholar
  49. Emery AR (1973) Preliminary comparisons of day and night habits of freshwater fish in Ontario lakes. J Fish Res Board Can 30(6):761–775CrossRefGoogle Scholar
  50. Eriksson A, Jacobi MN, Nystrom J, Tunstrom K (2010) Determining interaction rules in animal swarms. Behav Ecology 21(5):1106–1111. doi: 10.1093/beheco/arq118 CrossRefGoogle Scholar
  51. Evans SR, Finnie M, Manica A (2007) Shoaling preferences in decapod crustacea. Anim Behav 74:1691–1696. doi: 10.1016/j.anbehav.2007.03.017 CrossRefGoogle Scholar
  52. Evershed RP, Morgan ED, Cammaerts MC (1982) 3-ethyl-2,5-dimethylpyrazine, the trail pheromone from the venom gland of 8 species of myrmica ants. Insect Biochem 12(4):383–391. doi: 10.1016/0020-1790(82)90035-x CrossRefGoogle Scholar
  53. Fletcher RJ Jr (2009) Does attraction to conspecifics explain the patch-size effect? An experimental test. Oikos 118(8):1139–1147. doi: 10.1111/j.1600-0706.2009.17342.x CrossRefGoogle Scholar
  54. Flierl G, Grunbaum D, Levin S, Olson D (1999) From individuals to aggregations: the interplay between behavior and physics. J Theor Biol 196(4):397–454PubMedCrossRefGoogle Scholar
  55. Franks NR (1985) Reproduction, foraging efficiency and worker polymorphism in army ants. Fortschritte Der Zoologie 31:91–107Google Scholar
  56. Franks NR, Bryant S (1987) Rhythmical patterns of activity within the nest of ants. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. Peperny, MunichGoogle Scholar
  57. Furmankiewicz J, Ruczynski I, Urban R, Jones G (2011) Social calls provide tree-dwelling bats with information about the location of conspecifics at roosts. Etholo 117(6):480–489. doi: 10.1111/j.1439-0310.2011.01897.x CrossRefGoogle Scholar
  58. Gaioni SJ, Ross LE (1982) Distress calling induced by reductions in group-size in ducklings reared with conspecifics or imprinting stimuli. Anim Learn Behav 10(4):521–529. doi: 10.3758/bf03212294 CrossRefGoogle Scholar
  59. Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M, Chate H, Theraulaz G (2012) Deciphering interactions in moving animal groups. Plos Compu Biol 8(9). doi: 10.1371/journal.pcbi.1002678
  60. Gregoire G, Chate H, Tu YH (2003) Moving and staying together without a leader. Phys D Nonlinear Phenom 181(3–4):157–170. doi: 10.1016/s0167-2789(03)00102-7 CrossRefGoogle Scholar
  61. Grunbaum D (1998) Schooling as a strategy for taxis in a noisy environment. Evol Ecology 12(5):503–522CrossRefGoogle Scholar
  62. Gueron S, Levin SA (1993) Self-organization of front patterns in large wildebeest herds. J Theor Biol 165(4):541–552. doi: 10.1006/jtbi.1993.1206 CrossRefGoogle Scholar
  63. Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations. J Theor Biol 182(1):85–98. doi: 10.1006/jtbi.1996.0144 CrossRefGoogle Scholar
  64. Guillard J, Fernandes P, Laloe T, Brehmer P (2011) Three-dimensional internal spatial structure of young-of-the-year pelagic freshwater fish provides evidence for the identification of fish school species. Lim Oceanogr Methods 9:322–328. doi: 10.4319/lom.2011.9.322 CrossRefGoogle Scholar
  65. Hager MC, Helfman GS (1991) Safety in numbers – shoal size choice by minnows under predatory threat. Behav Ecology Sociobiology 29:271–276CrossRefGoogle Scholar
  66. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311PubMedCrossRefGoogle Scholar
  67. Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjostheim DB, Couzin ID (2012) The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr Biol 22(13):1213–1217. doi: 10.1016/j.cub.2012.04.050 PubMedCrossRefGoogle Scholar
  68. Hansen MJ, Schaerf TM, Ward AJ (2015a) The effect of hunger on the exploratory behaviour of shoals of mosquitofish Gambusia holbrooki. Behav. doi:
  69. Hansen MJ, Schaerf TM, Ward AJW (2015b) The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav Ecolo Soc 69(10):1713–1722. doi:
  70. Hatcher MJ, Tofts C, Franks NR (1992) Mutual exclusion as a mechanism for information exchange within ant nests. Naturwissenschaften 79(1):32–34. doi: 10.1007/bf01132279 CrossRefGoogle Scholar
  71. Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phy Review E 51(5):4282–4286. doi: 10.1103/PhysRevE.51.4282 CrossRefGoogle Scholar
  72. Helbing D, Schweitzer F, Keltsch J, Molnar P (1997) Active walker model for the formation of human and animal trail systems. Phy Rev E 56(3):2527–2539. doi: 10.1103/PhysRevE.56.2527 CrossRefGoogle Scholar
  73. Hemelrijk CK, Hildenbrandt H (2011) Some causes of the variable shape of flocks of birds. Plos One 6(8). doi: 10.1371/journal.pone.0022479
  74. Hemelrijk CK, Hildenbrandt H (2012) Schools of fish and flocks of birds: their shape and internal structure by self-organization. Inter Focus 2(6):726–737. doi: 10.1098/rsfs.2012.0025 CrossRefGoogle Scholar
  75. Hemelrijk CK, Hildenbrandt H, Reinders J, Stamhuis EJ (2010) Emergence of oblong school shape: models and empirical data of fish. Etholo 116(11):1099–1112. doi: 10.1111/j.1439-0310.2010.01818.x CrossRefGoogle Scholar
  76. Henzi SP, Lusseau D, Weingrill T, van Schaik CP, Barrett L (2009) Cyclicity in the structure of female baboon social networks. Behav Ecol Sociobiol 63(7):1015–1021. doi: 10.1007/s00265-009-0720-y CrossRefGoogle Scholar
  77. Herbert-Read JE, Perna A, Mann RP, Schaerf TM, Sumpter DJT, Ward AJW (2011) Inferring the rules of interaction of shoaling fish. Proc Natl Acad Sci U S A 108:18726–18731PubMedPubMedCentralCrossRefGoogle Scholar
  78. Herskin J, Steffensen JF (1998) Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. J Fish Biol 53(2):366–376CrossRefGoogle Scholar
  79. Heylighen F (2013) Self-organization in Communicating Groups: the emergence of coordination, shared references and collective intelligence. In: Massip-Bonet A, Bastardas-Boada A (eds) Complexity perspectives on language, communication, and society. Springer, New York, pp 117–149CrossRefGoogle Scholar
  80. Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164. doi: 10.1016/j.anbehav.2003.04.004 CrossRefGoogle Scholar
  81. Hölldobler B, Wilson EO (1990) The ants. Harvard University PressGoogle Scholar
  82. Huth A, Wissel C (1992) The simulation of the movement of fish schools. J Theor Biol 156(3):365–385. doi: 10.1016/s0022-5193(05)80681-2 CrossRefGoogle Scholar
  83. Jander R, Daumer K (1974) Guide-line and gravity orientation of blind termites foraging in open (Termitidae macrotermes, Hospitalitermes). Insectes Socia 21(1):45–69. doi: 10.1007/bf02222979 CrossRefGoogle Scholar
  84. Jeanson R, Rivault C, Deneubourg JL, Blanco S, Fournier R, Jost C, Theraulaz G (2005) Self-organized aggregation in cockroaches. Anim Behav 69:169–180. doi: 10.1016/j.anbehav.204.02.009 CrossRefGoogle Scholar
  85. Johansen JL, Vaknin R, Steffensen JF, Domenici P (2010) Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch Embiotoca lateralis. Mar Ecol Prog Ser 420:221–229. doi: 10.3354/meps08885 CrossRefGoogle Scholar
  86. Katz Y, Tunstrom K, Ioannou CC, Huepe C, Couzin ID (2011) Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci U S A 108(46):18720–18725. doi: 10.1073/pnas.1107583108 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Keenleyside MHA (1955) Some aspects of the schooling behaviour of fish. Behaviour 8:83–248CrossRefGoogle Scholar
  88. Kelley DH, Ouellette NT (2013) Emergent dynamics of laboratory insect swarms. Sci R 3. doi: 10.1038/srep01073
  89. King AJ, Cowlishaw G (2009) All together now: behavioural synchrony in baboons. Anim Behav 78(6):1381–1387. doi: 10.1016/j.anbehav.2009.09.009 CrossRefGoogle Scholar
  90. King AJ, Isaac NJB, Cowlishaw G (2009) Ecological, social and reproductive factors shape producer-scrounger dynamics in wild baboons. Behav Ecolo 20:1039–1049CrossRefGoogle Scholar
  91. Krakauer DC (1995) Groups confuse predators by exploiting perceptual bottlenecks: a connectionist model of the confusion effect. Behav Ecol Sociobiol 36(6):421–429CrossRefGoogle Scholar
  92. Krause J, Reeves P, Hoare D (1998a) Positioning behaviour in roach shoals: the role of body length and nutritional state. Behaviour 135:1031–1039CrossRefGoogle Scholar
  93. Krause J, Ruxton GD, Rubenstein D (1998b) Is there always an influence of shoal size on predator hunting success? J Fish Biol 52(3):494–501CrossRefGoogle Scholar
  94. Krause J, Ward AJW, Jackson AL, Ruxton GD, James R, Currie S (2005) The influence of differential swimming speeds on composition of multi-species fish shoals. J Fish Biol 67(3):866–872. doi: 10.1111/j.1095-8649.2005.00769.x CrossRefGoogle Scholar
  95. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, BerlinCrossRefGoogle Scholar
  96. Launay F, Mills AD, Faure JM (1991) Social motivation in japanese-quail coturnix-coturnix-japonica chicks selected for high or low-levels of treadmill behavior. Behav Processes 24(2):95–110. doi: 10.1016/0376-6357(91)90002-h PubMedCrossRefGoogle Scholar
  97. Lemasson BH, Anderson JJ, Goodwin RA (2009) Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention. J Theor Biol 261(4):501–510. doi: 10.1016/j.jtbi.2009.08.013 PubMedCrossRefGoogle Scholar
  98. Levin S (1997) Conceptual and methodological issues in the modeling of biological aggregations. In: Parrish JK, Hamner WM (eds) Animal groups in three dimensions. Cambridge University Press, Cambridge, pp 247–256CrossRefGoogle Scholar
  99. Lingle S, Wyman MT, Kotrba R, Teichroeb LJ, Romanow CA (2012) What makes a cry a cry? A review of infant distress vocalizations. Curr Zool 58(5):698–726CrossRefGoogle Scholar
  100. Lukeman R, Li YX, Edelstein-Keshet L (2010) Inferring individual rules from collective behavior. Proc Natl Acad Sci U S A 107(28):12576–12580. doi: 10.1073/pnas.1001763107 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Major PF (1977) Predator–prey interactions in schooling fishes during periods of twilight: a study of the silverside Pranesus insulanrm in Hawaii. Fishery B NOAA 75:415–426Google Scholar
  102. Major PF, Dill LM (1978) 3-dimensional structure of airborne bird flocks. Behav Ecol Sociobiol 4(2):111–122. doi: 10.1007/bf00354974 CrossRefGoogle Scholar
  103. Makris NC, Ratilal P, Jagannathan S, Gong Z, Andrews M, Bertsatos I, Godo OR, Nero RW, Jech JM (2009) Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323(5922):1734–1737. doi: 10.1126/science.1169441 PubMedCrossRefGoogle Scholar
  104. Mann RP, Perna A, Strombom D, Garnett R, Herbert-Read JE, Sumpter DJT, Ward AJW (2013) Multi-scale inference of interaction rules in animal groups using Bayesian Model Selection. Plos Compu Biolo 9(3). doi: 10.1371/journal.pcbi.1002961
  105. McFarland W, Okubo A (1997) Metabolic models of fish school behavior – the need for quantitative observations. In: Parrish JK, Hamner WM (eds) Animal groups in three dimensions. Cambridge University Press, Cambridge, pp 301–312CrossRefGoogle Scholar
  106. Michelena P, Henric K, Angibault JM, Gautrais J, Lapeyronie P, Porter RH, Deneubourg JL, Bon R (2005) An experimental study of social attraction and spacing between the sexes in sheep. J Exp Biol 208(23):4419–4426. doi: 10.1242/jeb.01909 PubMedCrossRefGoogle Scholar
  107. Michelena P, Gautrais J, Gerard JF, Bon R, Deneubourg JL (2008) Social cohesion in groups of sheep: effect of activity level, sex composition and group size. Appl Anim Behav Sci 112(1–2):81–93. doi: 10.1016/j.applanim.2007.06.020 CrossRefGoogle Scholar
  108. Mills AD, Faure JM (1990) The treadmill test for the measurement of social motivation in phasianidae chicks. Med Sci Res 18(5):179–180Google Scholar
  109. Neda Z, Ravasz E, Brechet Y, Vicsek T, Barabasi AL (2000) The sound of many hands clapping – tumultuous applause can transform itself into waves of synchronized clapping. Nature 403(6772):849–850. doi: 10.1038/35002660 PubMedCrossRefGoogle Scholar
  110. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New YorkGoogle Scholar
  111. Nieh JC (2010) A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr Biol 20(4):310–315. doi: 10.1016/j.cub.2009.12.060 PubMedCrossRefGoogle Scholar
  112. Niwa HS (2004) Space-irrelevant scaling law for fish school sizes. J Theor Biol 228(3):347–357. doi: 10.1016/j.jtbi.2004.01.011 PubMedCrossRefGoogle Scholar
  113. O’Brien DP (1989) Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea, Mysidacea). J Exper Marine Biolo Ecolo 128(1):1–30. doi: 10.1016/0022-0981(89)90090-7 CrossRefGoogle Scholar
  114. Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution, Monographs in population biology. Princeton University Press, PrincetonGoogle Scholar
  115. Okubo A (1986) Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv Biophys 22:1–94PubMedCrossRefGoogle Scholar
  116. Parr AE (1927) A contribution to the theoretical analysis of the schooling behavior of fishes. Occasional papers of the Bingham oceanographic collectionGoogle Scholar
  117. Parrish JK, Turchin P (1997) Individual decisions, traffic rules and emergent pattern in schooling fish. In: Parrish JK, Hamner WM (eds) Animal groups in three dimensions. How species aggregate. Cambridge University Press, Cambridge, pp 126–142CrossRefGoogle Scholar
  118. Partridge BL (1981) Internal dynamics and the interrelations of fish in schools. J Comp Physiol 144(3):313–325CrossRefGoogle Scholar
  119. Partridge BL (1982) The structure and function of fish schools. Sci Am 246:114–123PubMedCrossRefGoogle Scholar
  120. Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools. J Comp Physiol 135:315–325CrossRefGoogle Scholar
  121. Partridge BL, Pitcher T, Cullen JM, Wilson J (1980) The 3-dimensional structure of fish schools. Behav Ecol Sociobiol 6(4):277–288. doi: 10.1007/bf00292770 CrossRefGoogle Scholar
  122. Pavlov DS, Kasumyan AO (2000) Patterns and mechanisms of schooling behavior of fish: a review. J Ichthyol 40(Supplement 2):S163–S231Google Scholar
  123. Perez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG (2014) idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods 11(7):743. doi: 10.1038/nmeth.2994 PubMedCrossRefGoogle Scholar
  124. Pitcher TJ (1973a) 3-dimensional structure of schools in minnow, Phoxinus phoxinus (L). Anim Behav 21(NOV):673–686. doi: 10.1016/s0003-3472(73)80091-0
  125. Pitcher TJ (1973a) Some field measurements on minnow schools. Trans Am Fish Soc 102(4):840–843. doi: 10.1577/1548-8659(1973)102 CrossRefGoogle Scholar
  126. Pomeroy H, Heppner F (1992) Structure of turning in airborne rock dove (Columba livia) flocks. Auk 109(2):256–267CrossRefGoogle Scholar
  127. Prins HHT (1996) Ecology and behaviour of the African buffalo, Chapman & Hall wildlife ecology and behaviour series. Springer, DordrechtCrossRefGoogle Scholar
  128. Radakov DV (1973) Schooling in the ecology of fish. John Wiley & Sons, New YorkGoogle Scholar
  129. Reid CR, Sumpter DJT, Beekman M (2011) Optimisation in a natural system: argentine ants solve the Towers of Hanoi. J Exp Biol 214(1):50–58. doi: 10.1242/jeb.048173 PubMedCrossRefGoogle Scholar
  130. Reuter H, Breckling B (1994) Selforganization of fish schools – an object-oriented model. Ecol Model 75:147–159. doi: 10.1016/0304-3800(94)90014-0 CrossRefGoogle Scholar
  131. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21:25–34CrossRefGoogle Scholar
  132. Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW (2005) Insect communication – ‘no entry’ signal in ant foraging. Nature 438(7067):442–442. doi: 10.1038/438442a PubMedCrossRefGoogle Scholar
  133. Romanczuk P, Couzin ID, Schimansky-Geier L (2009) Collective motion due to individual escape and pursuit response. Phys Rev Lett 102(1):010602. doi: 10.1103/PhysRevLett.102.010602 PubMedCrossRefGoogle Scholar
  134. Romey WL (1996) Individual differences make a difference in the trajectories of simulated fish schools. Ecol Model 92:65–77CrossRefGoogle Scholar
  135. Romey WL, Miller MM, Vidal JM (2014) Collision avoidance during group evasive manoeuvres: a comparison of real versus simulated swarms with manipulated vision and surface wave detectors. Proc Royal Soc B-Biol Sci 281(1788):20140812. doi: 10.1098/rspb.2014.0812 CrossRefGoogle Scholar
  136. Saif M, Chatterjee D, Buske C, Gerlai R (2013) Sight of conspecific images induces changes in neurochemistry in zebrafish. Behav Brain Res 243:294–299. doi: 10.1016/j.bbr.2013.01.020 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Seeley TD (2002) When is self-organization used in biological systems? Biol Bull 202(3):314–318. doi: 10.2307/1543484 PubMedCrossRefGoogle Scholar
  138. Sendova-Franks AB, Franks NR (1999) Self-assembly, self-organization and division of labour. Philos Trans Royal Soc B-Biol Sci 354(1388):1395–1405. doi: 10.1098/rstb.1999.0487 CrossRefGoogle Scholar
  139. Serrano D, Forero MG, Donazar JA, Tella JL (2004) Dispersal and social attraction affect colony selection and dynamics of lesser kestrels. Ecology 85(12):3438–3447. doi: 10.1890/04-0463 CrossRefGoogle Scholar
  140. Serrano D, Oro D, Ursua E, Tella JL (2005) Colony size selection determines adult survival and dispersal preferences: allee effects in a colonial bird. Am Nat 166(2):E22–E31. doi: 10.1086/431255 PubMedCrossRefGoogle Scholar
  141. Shang YL, Bouffanais R (2014) Influence of the number of topologically interacting neighbors on swarm dynamics. Sci Rep 4:4184. doi: 10.1038/srep04184 PubMedPubMedCentralGoogle Scholar
  142. Simpson SJ, Sword GA, Lorch PD, Couzin ID (2006) Cannibal crickets on a forced march for protein and salt. Proc Natl Acad Sci U S A 103(11):4152–4156. doi: 10.1073/pnas.0508915103 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Smith GW, Glass CW, Johnstone ADF, Mojsiewicz WR (1993) Diurnal patterns in the spatial relationships between saithe, Pullachius virens, schooling in the wild. J Fish Biol 43(suppl A):315–325CrossRefGoogle Scholar
  144. Strandburg-Peshkin A, Twomey CR, Bode NWF, Kao AB, Katz Y, Ioannou CC, Rosenthal SB, Torney CJ, Wu HS, Levin SA, Couzin ID (2013) Visual sensory networks and effective information transfer in animal groups. Curr Biol 23(17):R709–R711. doi: 10.1016/j.cub.2013.07.059 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Strömbom D (2011) Collective motion from local attraction. J Theor Biol 283(1):145–151. doi: 10.1016/j.jtbi.2011.05.019 PubMedCrossRefGoogle Scholar
  146. Sumpter DJT (2010) Collective animal behaviour. Princeton University Press, Princeton and OxfordGoogle Scholar
  147. Sumpter DJT, Mann RP, Perna A (2012) The modelling cycle for collective animal behaviour. Interface Focus 2(6):764–773. doi: 10.1098/rsfs.2012.0031 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tunstrom K, Katz Y, Ioannou CC, Huepe C, Lutz MJ, Couzin ID (2013) Collective states, multistability and transitional behavior in schooling fish. Plos Comp Biolo 9(2). doi: 10.1371/journal.pcbi.1002915
  149. Usherwood JR, Stavrou M, Lowe JC, Roskilly K, Wilson AM (2011) Flying in a flock comes at a cost in pigeons. Nature 474(7352):494–497. doi: 10.1038/nature10164 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Uvarov BP (1977) Grasshoppers and locusts: a handbook of general acridology, vol 2. Centre for Overseas Pest Research, LondonGoogle Scholar
  151. Vicsek T, Czirok A, Benjacob E, Cohen I, Shochet O (1995) Novel type of phase-transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229. doi: 10.1103/PhysRevLett.75.1226 PubMedCrossRefGoogle Scholar
  152. Viscido SV, Wethey DS (2002) Quantitative analysis of fiddler crab flock movement: evidence for ‘selfish herd’ behaviour. Anim Behav 63:735–741. doi: 10.1006/anbe.2001.1935 CrossRefGoogle Scholar
  153. Viscido SV, Parrish JK, Grunbaum D (2004) Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar Ecol Prog Ser 273:239–249. doi: 10.3354/meps273239 CrossRefGoogle Scholar
  154. Viscido SV, Parrish JK, Grunbaum D (2005) The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecol Model 183(2–3):347–363. doi: 10.1016/j.ecolmodel.2004.08.019 CrossRefGoogle Scholar
  155. Ward AJW, Axford S, Krause J (2002a) Mixed-species shoaling in fish: the sensory mechanisms and costs of shoal choice. Behav Ecolo Sociobiolo 52(3):182–187. doi: 10.1007/s00265-002-0505-z CrossRefGoogle Scholar
  156. Ward AJW, Hoare DJ, Couzin ID, Broom M, Krause J (2002b) The effects of parasitism and body length on positioning within wild fish shoals. J An Ecolo 71:10–14CrossRefGoogle Scholar
  157. Wilson EO (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  158. Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim Behav 69:1357–1371. doi: 10.1016/j.anbehav.2004.08.018 CrossRefGoogle Scholar
  159. Wrege PH, Wikelski M, Mandel JT, Rassweiler T, Couzin ID (2005) Antbirds parasitize foraging army ants. Ecology 86(3):555–559. doi: 10.1890/04-1133 CrossRefGoogle Scholar
  160. Yates CA, Erban R, Escudero C, Couzin ID, Buhl J, Kevrekidis IG, Maini PK, Sumpter DJT (2009) Inherent noise can facilitate coherence in collective swarm motion. Proc Natl Acad Sci U S A 106(14):5464–5469. doi: 10.1073/pnas.0811195106 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yen J, Bundock EA (1997) Aggregative behavior in zooplankton: phototactic swarming in 4 developmental stages of Coullana canadensis (Copepoda, Harpacticoida). In: Parrish JK, Hamner WM (eds) Animal groups in three dimensions. How species aggregate. pp 143–162Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ashley Ward
    • 1
  • Mike Webster
    • 2
  1. 1.School of Life and Environmental SciencesThe University of SydneySydneyAustralia
  2. 2.School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations