• Ashley Ward
  • Mike Webster


In the preceding chapters, we have reviewed the mechanisms underlying the formation and persistence of animal groups and the functions and trade-offs associated with group living. We have also explored the development and evolution of grouping behaviour. In this final chapter, we summarise the current state of our understanding and, in very broad terms, outline what we consider to be some of the key outstanding questions in each of these four areas.


Group Living Cooperative Breeder Predator Odour Interaction Rule Swarm Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID (2013) Emergent Sensing of Complex Environments by Mobile Animal Groups. Science 339(6119):574–576. doi: 10.1126/science.1225883 CrossRefPubMedGoogle Scholar
  2. Brashares JS, Garland T, Arcese P (2000) Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behav Ecol 11(4):452–463CrossRefGoogle Scholar
  3. Breder CM (1951) Studies on the structure of the fish school. B Am Mus Nat Hist 98(1):1–27Google Scholar
  4. Buske C, Gerlai R (2011) Shoaling develops with age in Zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 35:1409–1415CrossRefPubMedPubMedCentralGoogle Scholar
  5. Conradt L, Roper TJ (2003) Group decision-making in animals. Nature 421(6919):155–158CrossRefPubMedGoogle Scholar
  6. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11. doi: 10.1006/yjtbi.3065 CrossRefPubMedGoogle Scholar
  7. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513–516. doi: 10.1038/nature03236 CrossRefPubMedGoogle Scholar
  8. Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, PrincetonCrossRefGoogle Scholar
  9. Faria JJ, Dyer JR, Clément RO, Couzin ID, Holt N, Ward AJW, Water D, Krause J (2010) A novel method for investigating the collective behaviour of fish: introducing ‘Robofish’. Behav Ecol Sociobiol 64(8):1211–1218CrossRefGoogle Scholar
  10. Ferrari MC, Chivers DP (2009) Temporal variability, threat sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behaviour. Anim Behav 78(1):11–16CrossRefGoogle Scholar
  11. Gerard JF, Bideau E, Maublanc ML, Loisel P, Marchal C (2002) Herd size in large herbivores: encoded in the individual or emergent? Biol Bull 202(3):275–282CrossRefPubMedGoogle Scholar
  12. Giesing ER, Suski CD, Warner RE, Bell AM (2011) Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. Proc Royal Soc B Biol Sci 278:1753–1759CrossRefGoogle Scholar
  13. Giraldeau LA, Caraco T (1993) Genetic relatedness and group size in an aggregation economy. Evol Ecol 7(4):429–438CrossRefGoogle Scholar
  14. Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, PrincetonGoogle Scholar
  15. Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tâche F, Saïd I, Durier V, Canonge S, Amé JM, Detrain C, Correll N, Martinoli A, Mondada F, Siegwart R, Deneubourg JL (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853):1155–1158CrossRefPubMedGoogle Scholar
  16. Hamilton IM (2000) Recruiters and joiners: using optimal skew theory to predict group size and the division of resources within groups of social foragers. Am Nat 155(5):684–695CrossRefPubMedGoogle Scholar
  17. Higashi M, Yamamura N (1993) What determines animal group size? Insider-outsider conflict and its resolution. Am Natu 142:553–563CrossRefGoogle Scholar
  18. Holldobler B, Wilson EO (1970) Recruitment trails in the harvester ant Pogonomyrmex badius. Psyche 77(4):385–399CrossRefGoogle Scholar
  19. Keller L, Reeve HK (1994) Partitioning of reproduction in animal societies. Trends Ecol Evol 9(3):98–102CrossRefPubMedGoogle Scholar
  20. Krause J, Ruxton GD (2002) Living in groups. OUP, OxfordGoogle Scholar
  21. Magurran AE (2005) Evolutionary ecology: the Trinidadian guppy. Oxford University Press, OxfordCrossRefGoogle Scholar
  22. Mathis A, Ferrari MC, Windel N, Messier F, Chivers DP (2008) Learning by embryos and the ghost of predation future. Proc Royal Soc London B Biol Sci 275(1651):2603–2607CrossRefGoogle Scholar
  23. Nagy M, Vasarhelyi G, Pettit B, Roberts-Mariani I, Vicsek T, Biro D (2013) Context-dependent hierarchies in pigeons. Proc Natl Acad Sci U S A 110:13049–13054CrossRefPubMedPubMedCentralGoogle Scholar
  24. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21:25–34CrossRefGoogle Scholar
  25. Sahin E (2005) Swarm robotics: from sources of inspiration to domains of application. In: Swarm robotics. Springer, Heidelberg, pp 10–20CrossRefGoogle Scholar
  26. Sibly RM (1983) Optimal group size is unstable. Anim Behav 31(3):947–948CrossRefGoogle Scholar
  27. Spence R, Smith C (2007) The role of early learning in determining shoaling preferences based on visual cues in the zebrafish, Danio rerio. Ethology 113(1):62–67CrossRefGoogle Scholar
  28. Strömbom D, Mann RP, Wilson AM, Hailes S, Morton AJ, Sumpter DJ, King AJ (2014) Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J R Soc Interface 11(100):20140719CrossRefPubMedPubMedCentralGoogle Scholar
  29. Vehrencamp SL (1983) Optimal degree of skew in cooperative societies. Am Zool 23(2):327–335CrossRefGoogle Scholar
  30. Wang X, Kang L (2014) Molecular mechanisms of phase change in locusts. Annu Rev Entomol 59:225–244CrossRefPubMedGoogle Scholar
  31. Warburton K, Lees N (1996) Species discrimination in guppies: learned responses to visual cues. Anim Behav 52:371–378CrossRefGoogle Scholar
  32. Ward AJW, Duff AJ, Horsfall JS, Currie S (2008a) Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc Royal Soc B Biolo Sci 275:101–105CrossRefGoogle Scholar
  33. Ward AJW, Sumpter DJT, Couzin LD, Hart PJB, Krause J (2008b) Quorum decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci U S A 105:6948–6953CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ashley Ward
    • 1
  • Mike Webster
    • 2
  1. 1.School of Life and Environmental SciencesThe University of SydneySydneyAustralia
  2. 2.School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations