Skip to main content

An Empirical Approach to the Mathematical Values of Problem Choice and Argumentation

  • Conference paper
  • First Online:
Mathematical Cultures

Part of the book series: Trends in the History of Science ((TRENDSHISTORYSCIENCE))

Abstract

In this paper we describe and discuss how mathematical values influence researchers’ choices when practicing mathematics. Our paper is based on a qualitative investigation of mathematicians’ practices, and its goal is to gain an empirically grounded understanding of mathematical values. More specifically, we will analyze the values connected to mathematicians’ choice of problems and their choice of argumentative style when communicating their results. We suggest that these two situations can be understood as relating to the three mathematical values: recognizability, formalizability and believability. Furthermore, we discuss three meta-issues concerning the general nature of mathematical values, namely (1) the origin of mathematical values, (2) the extent to which different values change over time and (3) the situatedness of mathematical values; that is the extent to which mathematical values depend on the specific context in which you are located. We conclude the chapter by recommending a methodological pluralism in future investigations of mathematical values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barany, M. J. & MacKenzie, D. (2014). Chalk: Materials and concepts in mathematics research. In C. Coopmans, M. Lynch, J. Vertesi & S. Woolgar (Eds.), Representation in scientific practice revisited (pp. 107–129). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Bishop, A. J. (this volume). What would the mathematics curriculum look like if instead of concepts and techniques, values were the focus?

    Google Scholar 

  • Burton, L. (2004). Mathematicians as enquirers: Learning about learning mathematics. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Charmaz, K. (2006). Constructing grounded theory. London, Thousand Oaks: Sage Publications.

    Google Scholar 

  • Ernest, P. (2016). Mathematics and values.

    Google Scholar 

  • Ferreirós, J. (this volume). Purity as a value in the German-speaking area.

    Google Scholar 

  • Geist, C., Löwe, B. & Kerkhove, B. V. (2010). Peer review and knowledge by testimony in mathematics. In B. Löwe & T. Müller (Eds.). Philosophy of mathematics: Sociological aspects and mathematical Practice PhiMSAMP (pp. 155–178). Texts in Philosophy 11, London: College Publications.

    Google Scholar 

  • Greiffenhagen, C. W. K. (2014). The materiality of mathematics: Presenting mathematics at the blackboard. The British Journal of Sociology, 65(3), 502–528.

    Article  Google Scholar 

  • Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88(2), 127–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Hilbert, D. (1902). Grundlagen der Geometrie. Unpublished lectures, Göttingen: Mathematisches Institut.

    Google Scholar 

  • Inglis, M. & Aberdein, A. (this volume). Diversity in proof appraisal.

    Google Scholar 

  • Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358–390.

    Article  Google Scholar 

  • Inglis, M., Mejia-Ramos, J.-P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards when evaluating elementary proofs. Topics in Cognitive Science, 5, 270–282.

    Article  Google Scholar 

  • Johansen, M. W. (2013). What’s in a diagram? On the classification of symbols, figures and diagrams. In L. Magnani (Ed.), Model-Based Reasoning in Science and Technology. Theoretical and Cognitive Issues (pp. 89–108). Heidelberg: Springer.

    Google Scholar 

  • Johansen, M. W. & Misfeldt, M. (2014). Når matematikere undersøger matematik—og hvilken betydning det har for undersøgende matematikundervisning. MONA, 2014(4), 42–59.

    Google Scholar 

  • Mancosu, P. (2005). Visualization in logic and mathematics. In P. Mancosu, K. F. Jørgensen & S. A. Pedersen (Eds.), Visualization, explanation and reasoning styles in mathematics (pp. 13–30). Dordrecht: Springer.

    Google Scholar 

  • Misfeldt, M. (2005). Media in mathematical writing. For the Learning of Mathematics, 25(2), 36–42.

    Google Scholar 

  • Misfeldt, M. (2011). Computers as medium for mathematical writing. Semiotica, 186, 239–258.

    Google Scholar 

  • Misfeldt, M. & Johansen, M. W. (2015). Research mathematicians’ practices in selecting mathematical problems. Educational Studies in Mathematics, 89(3), 357–373.

    Google Scholar 

  • Müller-Hill, E. (2011). Die epistemische Rolle formalisierbarer mathematischer Beweise. Formalisierbarkeitsorientierte Konzeptionen mathematischen Wissens und mathematischer Rechtfertigung innerhalb einer sozio-empirisch informierten Erkenntnistheorie der Mathematik. Bonn: Rheinischen Friedrich-Wilhelms-Universität i Bonn. Ph.D. Dissertation. Retrieved 18. sep. 2014 from: http://hss.ulb.uni-bonn.de/2011/2526/2526.pdf.

  • Pasch, M. & Dehn, M. (1926 [1882]). Vorlesungen über neuere Geometrie. (2nd ed.) Die Grundlehren der mathematischen Wissenschaften 23, Berlin: Springer.

    Google Scholar 

  • Strauss, A. L., & Corbin, J. M. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park: Sage Publications.

    Google Scholar 

  • Sundström, R. (this volume). The notion of fit as a mathematical value.

    Google Scholar 

  • Tymoczko, T. (1979). The four-color problem and its philosophical significance. The Journal of Philosophy, 76(2), 57–83.

    Article  Google Scholar 

  • Weber, K. (2013). On the sophistication of naïve empirical reasoning: Factors influencing mathematicians’ persuasion ratings of empirical arguments. Research in Mathematics Education, 15, 100–114.

    Article  Google Scholar 

  • Weber, K., Inglis, M., & Mejia-Ramos, J.-P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49, 36–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Misfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Johansen, M.W., Misfeldt, M. (2016). An Empirical Approach to the Mathematical Values of Problem Choice and Argumentation. In: Larvor, B. (eds) Mathematical Cultures. Trends in the History of Science. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-28582-5_15

Download citation

Publish with us

Policies and ethics