Skip to main content

Oncodynamic Effect of Cancer on Depression

  • Chapter
  • First Online:
Oncodynamics: Effects of Cancer Cells on the Body
  • 471 Accesses

Abstract

Depressive disorders are among the most prevalent psychiatric illnesses in the general population. In cancer patients, the prevalence of depression is dramatically increased. In addition to the psychosocial impact of a negative diagnosis, recent evidence suggests that cancer-induced depression (CID) is mediated by biological processes. This oncodynamic effect of cancer on the development of depression is poorly understood, leading to ineffective treatment of CID with drugs that are developed for depressive disorders in the general population. This chapter begins by outlining the clinical profile of major depressive disorder (MDD). We then provide a discussion of the most prominent neurobiological hypotheses of depression, including the monoamine hypothesis, the role of neurotrophins, physiological stress, inflammation, and glutamatergic signalling. The efficacy of current antidepressants is then discussed for depression in the general population and in cancer patients. This leads to a discussion of the biological basis of CID, including the effects of physiological stress, inflammation, and glutamatergic signalling. We conclude that more research is needed to determine oncodynamic events in the development of CID. Development of validated animal models is the first step in delineating contributing biological mechanisms, which will ultimately lead to more targeted drug development and improved efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal BB, Shishodia S, Sandur SK, et al. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72:1605–21.

    Article  PubMed  CAS  Google Scholar 

  2. Akechi T. Psychotherapy for depression among patients with advanced cancer. Jpn J Clin Oncol. 2012;42:1113–9.

    Article  PubMed  Google Scholar 

  3. Altamura CA, Mauri MC, Ferrara A, et al. Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry. 1993;150:1731–3.

    Article  PubMed  CAS  Google Scholar 

  4. Andrade L, Caraveo-Anduaga JJ, Berglund P, et al. The epidemiology of major depressive episodes: results from the international consortium of psychiatric epidemiology (ICPE) surveys. Int J Methods psychiatr Res. 2003;12:3–21.

    Article  PubMed  Google Scholar 

  5. Association AP. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Google Scholar 

  6. Auer DP, Putz B, Kraft E, et al. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry. 2000;47:305–13.

    Article  PubMed  CAS  Google Scholar 

  7. Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Banasr M, Chowdhury GM, Terwilliger R, et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry. 2010;15:501–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  PubMed  CAS  Google Scholar 

  10. Berrios GE. Melancholia and depression during the 19th century: a conceptual history. Br J Psychiatry: (the journal of mental science). 1988;153:298–304.

    Article  CAS  Google Scholar 

  11. Bhave G, Karim F, Carlton SM, et al. Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci. 2001;4:417–23.

    Article  PubMed  CAS  Google Scholar 

  12. Blendy JA. The role of CREB in depression and antidepressant treatment. Biol Psychiatry. 2006;59:1144–50.

    Article  PubMed  CAS  Google Scholar 

  13. Caplette-Gingras A, Savard J. Depression in women with metastatic breast cancer: a review of the literature. Palliat Suppor Care. 2008;6:377–87.

    Article  Google Scholar 

  14. Capuron L, Gumnick JF, Musselman DL, et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacol (official publication of the American College of Neuropsychopharmacology). 2002;26:643–52.

    Article  CAS  Google Scholar 

  15. Carvalho AF, Hyphantis T, Sales PM, et al. Major depressive disorder in breast cancer: a critical systematic review of pharmacological and psychotherapeutic clinical trials. Cancer Treat Rev. 2014;40:349–55.

    Article  PubMed  CAS  Google Scholar 

  16. Chen B, Dowlatshahi D, Macqueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50:260–5.

    Article  PubMed  CAS  Google Scholar 

  17. Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373:746–58.

    Article  PubMed  CAS  Google Scholar 

  19. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997;37:205–37.

    Article  PubMed  CAS  Google Scholar 

  20. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339:286–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Crane GE. The psychiatric side-effects of iproniazid. Am J Psychiatry. 1956;112:494–501.

    Article  PubMed  CAS  Google Scholar 

  23. De Felipe C, Herrero JF, O’brien JA et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392:394–397.

    Google Scholar 

  24. Driessen E, Hollon SD. Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators. Psychiatric Clin North Am. 2010;33:537–55.

    Article  Google Scholar 

  25. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    Article  PubMed  CAS  Google Scholar 

  27. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35:47–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Dunn AJ, Swiergiel AH, De Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev. 2005;29:891–909.

    Article  PubMed  CAS  Google Scholar 

  29. Duric V, Banasr M, Stockmeier CA, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol [official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP)]. 2013;16:69–82.

    Article  CAS  Google Scholar 

  30. Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.

    Article  PubMed  CAS  Google Scholar 

  31. Endicott J. Measurement of depression in patients with cancer. Cancer. 1984;53:2243–9.

    PubMed  CAS  Google Scholar 

  32. Fitzgerald PB, Laird AR, Maller J, et al. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29:683–95.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Fournier JC, Derubeis RJ, Hollon SD, et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA: (the journal of the American Medical Association). 2010;303:47–53.

    Article  CAS  Google Scholar 

  34. Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344:921–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Fras I, Litin EM, Pearson JS. Comparison of psychiatric symptoms in carcinoma of the pancreas with those in some other intra-abdominal neoplasms. Am J Psychiatry. 1967;123:1553–62.

    Article  PubMed  CAS  Google Scholar 

  36. Goh G, Scholl UI, Healy JM, et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet. 2014;46:613–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Gordon-Williams RM, Dickenson AH. Central neuronal mechanisms in cancer-induced bone pain. Curr Opin Support Palliat Care. 2007;1:6–10.

    Article  PubMed  Google Scholar 

  38. Gourley SL, Espitia JW, Sanacora G, et al. Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology. 2012;219:805–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Gourley SL, Taylor JR. Recapitulation and reversal of a persistent depression-like syndrome in rodents. In: Crawley N, et al, editors. Current protocols in neuroscience/ editorial board, Jacqueline Chapter 9: Unit 9 32. 2009.

    Google Scholar 

  40. Green AI, Austin CP. Psychopathology of pancreatic cancer. A psychobiologic probe. Psychosomatics. 1993;34:208–21.

    Article  PubMed  CAS  Google Scholar 

  41. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  44. Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12:123–37.

    Article  PubMed  CAS  Google Scholar 

  45. Hasler G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry: [official journal of the World Psychiatric Association (WPA)]. 2010;9:155–61.

    Article  Google Scholar 

  46. Hasler G, Van Der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64:193–200.

    Article  PubMed  CAS  Google Scholar 

  47. Hawkins RA. The blood-brain barrier and glutamate. Am J Clin Nutr. 2009;90:867S–74S.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry. 2000;61(6):4–6.

    PubMed  CAS  Google Scholar 

  49. Hoifodt RS, Strom C, Kolstrup N, et al. Effectiveness of cognitive behavioural therapy in primary health care: a review. Fam Pract. 2011;28:489–504.

    Article  PubMed  Google Scholar 

  50. Howland RH. Sequenced treatment alternatives to relieve depression (STAR*D). Part 1: study design. J Psychosoc Nurs Ment Health Serv. 2008;46:21–4.

    Article  Google Scholar 

  51. Howland RH. Sequenced treatment alternatives to relieve depression (STAR*D). Part 2: Study outcomes. J Psychosoc Nurs Ment Health Serv. 2008;46:21–4.

    Article  Google Scholar 

  52. Hoyo-Becerra C, Schlaak JF, Hermann DM. Insights from interferon-alpha-related depression for the pathogenesis of depression associated with inflammation. Brain Behav Immun. 2014;42:222–231.

    Google Scholar 

  53. Ibrahim L, Diazgranados N, Franco-Chaves J, et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology: (official publication of the American College of Neuropsychopharmacology). 2012;37:1526–33.

    Article  CAS  Google Scholar 

  54. Jackson DL, Graff CB, Richardson JD, et al. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur J Pharmacol. 1995;284:321–5.

    Article  PubMed  CAS  Google Scholar 

  55. Jacobsson L, Ottosson JO. Initial mental disorders in carcinoma of pancreas and stomach. Acta Psychiatr Scand Suppl. 1971;221:120–7.

    Article  PubMed  CAS  Google Scholar 

  56. Jehn CF, Kuehnhardt D, Bartholomae A, et al. Biomarkers of depression in cancer patients. Cancer. 2006;107:2723–9.

    Article  PubMed  CAS  Google Scholar 

  57. Juruena MF, Cleare AJ. Pariante CM (2004), The hypothalamic pituitary adrenal axis, glucocorticoid receptor function and relevance to depression. Revista brasileira de psiquiatria. 1999;26:189–201.

    Article  Google Scholar 

  58. Karege F, Vaudan G, Schwald M, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136:29–37.

    Article  PubMed  CAS  Google Scholar 

  59. Kato S, Negishi K, Mawatari K, et al. A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion. Neuroscience. 1992;48:903–14.

    Article  PubMed  CAS  Google Scholar 

  60. Kempton MJ, Salvador Z, Munafo MR, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry. 2011;68:675–90.

    Article  PubMed  Google Scholar 

  61. Kim JS, Schmid-Burgk W, Claus D, et al. Increased serum glutamate in depressed patients. Archiv fur Psychiatrie und Nervenkrankheiten. 1982;232:299–304.

    Article  PubMed  CAS  Google Scholar 

  62. Koenig R, Levin SM, Brennan MJ. The emotional status of cancer patients as measured by a psychological test. J Chronic Dis. 1967;20:923–30.

    Article  PubMed  CAS  Google Scholar 

  63. Koolschijn PC, Van Haren NE, Lensvelt-Mulders GJ, et al. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009;30:3719–35.

    Article  PubMed  Google Scholar 

  64. Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides. 2013;47:401–19.

    Article  PubMed  CAS  Google Scholar 

  65. Kornstein SG, Schneider RK. Clinical features of treatment-resistant depression. J Clin Psychiatry. 2001;62(16):18–25.

    PubMed  CAS  Google Scholar 

  66. Kortekaas R, Maguire RP, Van Waarde A, et al. Despite irreversible binding, PET tracer [11C]-SA5845 is suitable for imaging of drug competition at sigma receptors-the cases of ketamine and haloperidol. Neurochem Int. 2008;53:45–50.

    Article  PubMed  CAS  Google Scholar 

  67. Krishnan V, Han MH, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    Article  PubMed  CAS  Google Scholar 

  68. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Kuhn R. The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatry. 1958;115:459–64.

    Article  PubMed  CAS  Google Scholar 

  70. Lamkin DM. Inflammatory processes and depressive-like behavior in a syngeneic model of ovarian cancer. Iowa City: University of Iowa; 2010.

    Google Scholar 

  71. Lamkin DM, Lutgendorf SK, Lubaroff D, et al. Cancer induces inflammation and depressive-like behavior in the mouse: modulation by social housing. Brain Behav Immun. 2011;25:555–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Lanzenberger R, Wadsak W, Spindelegger C, et al. Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions. Int J Neuropsychopharmacol/[official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP)]. 2010;13:1129–43.

    Article  CAS  Google Scholar 

  73. Li M, Fitzgerald P, Rodin G. Evidence-based treatment of depression in patients with cancer. J Clin Oncol: (official journal of the American Society of Clinical Oncology). 2012;30:1187–96.

    Article  Google Scholar 

  74. Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Li N, Liu RJ, Dwyer JM, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Link CJ Jr, Kohn E, Reed E. The relationship between borderline ovarian tumors and epithelial ovarian carcinoma: epidemiologic, pathologic, and molecular aspects. Gynecol Oncol. 1996;60:347–54.

    Article  PubMed  CAS  Google Scholar 

  77. Litofsky NS, Farace E, Anderson F, Jr. et al. Depression in patients with high-grade glioma: results of the Glioma Outcomes Project. Neurosurgery. 2004;54:358–366; discussion 366–357.

    Google Scholar 

  78. Lloyd-Williams M. Difficulties in diagnosing and treating depression in the terminally ill cancer patient. Postgrad Med J. 2000;76:555–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Lloyd-Williams M, Payne S, Reeve J, et al. Antidepressant medication in patients with advanced cancer–an observational study. QJM: (monthly journal of the Association of Physicians). 2013;106:995–1001.

    Article  Google Scholar 

  80. Lopez JF, Chalmers DT, Little KY, et al. A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry. 1998;43:547–73.

    Article  PubMed  CAS  Google Scholar 

  81. Lundstrom S, Furst CJ. Symptoms in advanced cancer: relationship to endogenous cortisol levels. Palliat Med. 2003;17:503–8.

    Article  PubMed  Google Scholar 

  82. Lupien SJ, Mcewen BS, Gunnar MR, et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Article  PubMed  CAS  Google Scholar 

  83. Lutgendorf SK, Weinrib AZ, Penedo F, et al. Interleukin-6, cortisol, and depressive symptoms in ovarian cancer patients. J Clin Oncol: (official journal of the American Society of Clinical Oncology). 2008;26:4820–7.

    Article  CAS  Google Scholar 

  84. Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52.

    Article  PubMed  CAS  Google Scholar 

  85. Mahar I, Bambico FR, Mechawar N, et al. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014;38:173–92.

    Article  PubMed  CAS  Google Scholar 

  86. Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev. 2003;83:183–252.

    Article  PubMed  CAS  Google Scholar 

  87. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10:1089–93.

    Article  PubMed  CAS  Google Scholar 

  88. Mauri MC, Ferrara A, Boscati L, et al. Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology. 1998;37:124–9.

    Article  PubMed  CAS  Google Scholar 

  89. Mcentee WJ, Crook TH. Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology. 1993;111:391–401.

    Article  PubMed  CAS  Google Scholar 

  90. Mcewen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.

    Article  PubMed  Google Scholar 

  91. Mcewen BS, Chattarji S, Diamond DM, et al. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry. 2010;15:237–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130:1007s–15s.

    PubMed  CAS  Google Scholar 

  93. Micallef-Trigona B. Comparing the effects of repetitive transcranial magnetic stimulation and electroconvulsive therapy in the treatment of depression: a systematic review and meta-analysis. Depression Res Treat. 2014;2014:135049.

    Google Scholar 

  94. Mitani H, Shirayama Y, Yamada T, et al. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1155–8.

    Article  PubMed  CAS  Google Scholar 

  95. Muller JC, Pryor WW, Gibbons JE, et al. Depression and anxiety occurring during Rauwolfia therapy. J Am Med Assoc. 1955;159:836–9.

    Article  PubMed  CAS  Google Scholar 

  96. Munoz M, Covenas R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids. 2014;46:1727–50.

    Article  PubMed  CAS  Google Scholar 

  97. Murrough JW. Ketamine as a novel antidepressant: from synapse to behavior. Clin Pharmacol Ther. 2012;91:303–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Musselman DL, Lawson DH, Gumnick JF, et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. New Eng J Med. 2001;344:961–6.

    Article  PubMed  CAS  Google Scholar 

  99. Musselman DL, Miller AH, Porter MR, et al. Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am J Psychiatry. 2001;158:1252–7.

    Article  PubMed  CAS  Google Scholar 

  100. Nashed MG, Balenko MD, Singh G. Cancer-induced oxidative stress and pain. Curr Pain Headache Rep. 2014;18:384.

    Article  PubMed  Google Scholar 

  101. Nestler EJ, Barrot M, Dileone RJ, et al. Neurobiology of depression. Neuron. 2002;34:13–25.

    Article  PubMed  CAS  Google Scholar 

  102. Nestler EJ, Gould E, Manji H, et al. Preclinical models: status of basic research in depression. Biol Psychiatry. 2002;52:503–28.

    Article  PubMed  Google Scholar 

  103. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Neumeister A, Nugent AC, Waldeck T, et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry. 2004;61:765–73.

    Article  PubMed  CAS  Google Scholar 

  105. Ng CG, Boks MP, Zainal NZ, et al. The prevalence and pharmacotherapy of depression in cancer patients. J Affect Disord. 2011;131:1–7.

    Article  PubMed  CAS  Google Scholar 

  106. Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci: (the official journal of the Society for Neuroscience). 1996;16:2365–72.

    CAS  Google Scholar 

  107. O’neill S, Posada-Villa J, Medina-Mora ME, et al. Associations between DSM-IV mental disorders and subsequent self-reported diagnosis of cancer. J Psychosom Res. 2014;76:207–12.

    Article  PubMed  Google Scholar 

  108. Ollenschlager G, Karner J, Karner-Hanusch J, et al. Plasma glutamate–a prognostic marker of cancer and of other immunodeficiency syndromes? Scand J Clin Lab Invest. 1989;49:773–7.

    Article  PubMed  CAS  Google Scholar 

  109. Omote K, Kawamata T, Kawamata M, et al. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res. 1998;787:161–4.

    Article  PubMed  CAS  Google Scholar 

  110. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31:464–8.

    Article  PubMed  CAS  Google Scholar 

  111. Parker KJ, Schatzberg AF, Lyons DM. Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav. 2003;43:60–6.

    Article  PubMed  CAS  Google Scholar 

  112. Passik SD, Roth AJ. Anxiety symptoms and panic attacks preceding pancreatic cancer diagnosis. Psycho-oncology. 1999;8:268–72.

    Article  PubMed  CAS  Google Scholar 

  113. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology: (official publication of the American College of Neuropsychopharmacology). 2008;33:88–109.

    Article  CAS  Google Scholar 

  114. Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med. 2010;42:252–64.

    Article  PubMed  Google Scholar 

  115. Pyter LM, Pineros V, Galang JA, et al. Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proc Natl Acad Sci USA. 2009;106:9069–74.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Rasmuson T, Ljungberg B, Grankvist K, et al. Increased serum cortisol levels are associated with high tumour grade in patients with renal cell carcinoma. Acta Oncol. 2001;40:83–7.

    Article  PubMed  CAS  Google Scholar 

  117. Reddy BY, Greco SJ, Patel PS, et al. RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc Natl Acad Sci USA. 2009;106:4408–13.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Rivera S, Lopez-Soriano FJ, Azcon-Bieto J, et al. Blood amino acid compartmentation in mice bearing Lewis lung carcinoma. Cancer Res. 1987;47:5644–6.

    PubMed  CAS  Google Scholar 

  119. Robson MJ, Elliott M, Seminerio MJ, et al. Evaluation of sigma (sigma) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol: (the journal of the European College of Neuropsychopharmacology). 2012;22:308–17.

    Article  CAS  Google Scholar 

  120. Rodin G, Lloyd N, Katz M, et al. The treatment of depression in cancer patients: a systematic review. Support Care Cancer: (official journal of the Multinational Association of Supportive Care in Cancer). 2007;15:123–36.

    Article  Google Scholar 

  121. Rodriguez PL, Jiang S, Fu Y, et al. The proinflammatory peptide substance P promotes blood-brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int J Cancer. (Journal international du cancer). 2014;134:1034–44.

    Article  CAS  Google Scholar 

  122. Rooney A, Grant R. Pharmacological treatment of depression in patients with a primary brain tumour. Cochrane Database Syst Rev. 2013;5:Cd006932.

    Google Scholar 

  123. Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59.

    Article  PubMed  CAS  Google Scholar 

  124. Rush AJ, Fava M, Wisniewski SR, et al. Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design. Control Clin Trials. 2004;25:119–42.

    Article  PubMed  Google Scholar 

  125. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62:63–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol. 2009;88:17–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Schafer ZT, Brugge JS. IL-6 involvement in epithelial cancers. J Clin Invest. 2007;117:3660–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Schaur RJ, Fellier H, Gleispach H, et al. Tumor host relations. I. Increased plasma cortisol in tumor-bearing humans compared with patients with benign surgical diseases. J Cancer Res Clin Oncol. 1979;93:281–5.

    Article  PubMed  CAS  Google Scholar 

  129. Schaur RJ, Semmelrock HJ, Schauenstein E, et al. Tumor host relations. II. Influence of tumor extent and tumor site on plasma cortisol of patients with malignant diseases. J Cancer Res Clin Oncol. 1979;93:287–92.

    Article  PubMed  CAS  Google Scholar 

  130. Seidlitz EP, Sharma MK, Saikali Z, et al. Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis. 2009;26:781–7.

    Article  PubMed  CAS  Google Scholar 

  131. Seidlitz EP, Sharma MK, Singh G. A by-product of glutathione production in cancer cells may cause disruption in bone metabolic processes. Can J Physiol Pharmacol. 2010;88:197–203.

    Article  PubMed  CAS  Google Scholar 

  132. Seidlitz EP, Sharma MK, Singh G. Extracellular glutamate alters mature osteoclast and osteoblast functions. Can J Physiol Pharmacol. 2010;88:929–36.

    Article  PubMed  CAS  Google Scholar 

  133. Sharma MK, Seidlitz EP, Singh G. Cancer cells release glutamate via the cystine/glutamate antiporter. Biochem Biophys Res Commun. 2010;391:91–5.

    Article  PubMed  CAS  Google Scholar 

  134. Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160:1516–8.

    Article  PubMed  Google Scholar 

  135. Shore PA, Silver SL, Brodie BB. Interaction of reserpine, serotonin, and lysergic acid diethylamide in brain. Science. 1955;122:284–5.

    Article  PubMed  CAS  Google Scholar 

  136. Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr. 2000;130:1016s–22s.

    PubMed  CAS  Google Scholar 

  137. Somerset W, Stout SC, Miller AH et al. Breast cancer and depression. Oncology. 2004;18:1021–34; discussion 1035–26, 1047–28.

    Google Scholar 

  138. Soygur H, Palaoglu O, Akarsu ES, et al. Interleukin-6 levels and HPA axis activation in breast cancer patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1242–7.

    Article  PubMed  CAS  Google Scholar 

  139. Starkman MN, Gebarski SS, Berent S, et al. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry. 1992;32:756–65.

    Article  PubMed  CAS  Google Scholar 

  140. Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155:28–36.

    Article  PubMed  CAS  Google Scholar 

  141. Van Der Pompe G, Antoni MH, Heijnen CJ. Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinology. 1996;21:361–74.

    Article  PubMed  Google Scholar 

  142. Van Esch L, Roukema JA, Ernst MF, et al. Combined anxiety and depressive symptoms before diagnosis of breast cancer. J Affect Disord. 2012;136:895–901.

    Article  PubMed  Google Scholar 

  143. Warner-Schmidt JL, Duman RS. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA. 2007;104:4647–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Watts S, Leydon G, Birch B, et al. Depression and anxiety in prostate cancer: a systematic review and meta-analysis of prevalence rates. BMJ Open. 2014;4:e003901.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Williams S, Dale J. The effectiveness of treatment for depression/depressive symptoms in adults with cancer: a systematic review. Br J Cancer. 2006;94:372–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 1997;134:319–29.

    Article  PubMed  CAS  Google Scholar 

  147. Yan HC, Cao X, Das M, et al. Behavioral animal models of depression. Neurosci Bull. 2010;26:327–37.

    Article  PubMed  CAS  Google Scholar 

  148. Yang LM, Yu L, Jin HJ, et al. Substance P receptor antagonist in lateral habenula improves rat depression-like behavior. Brain Res Bull. 2014;100:22–8.

    Article  PubMed  CAS  Google Scholar 

  149. Yang M, Kim J, Kim JS, et al. Hippocampal dysfunctions in tumor-bearing mice. Brain Behav Immun. 2014;36:147–55.

    Article  PubMed  CAS  Google Scholar 

  150. Ye ZC, Sontheimer H. Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 1999;59:4383–91.

    PubMed  CAS  Google Scholar 

  151. Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord. 2014;169c:15–20.

    Google Scholar 

  152. Zarate CA Jr, Brutsche NE, Ibrahim L, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71:939–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Zarate CA Jr, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nashed, M.G., Frey, B.N., Rosebush, P., Singh, G. (2016). Oncodynamic Effect of Cancer on Depression. In: Singh, G. (eds) Oncodynamics: Effects of Cancer Cells on the Body. Springer, Cham. https://doi.org/10.1007/978-3-319-28558-0_6

Download citation

Publish with us

Policies and ethics