Skip to main content

Cancer-Induced Edema/Lymphedema

  • Chapter
  • First Online:
Oncodynamics: Effects of Cancer Cells on the Body
  • 460 Accesses

Abstract

Cancer patients are often prone to a variety of pathological changes that disrupt normal homeostatic processes in the body. Aside from medical interventions and therapies associated with treating the disease, the cancer itself is a major contributor to systemic disruption of physiological processes. Extracellular body fluid is tightly controlled and monitored by a variety of sensors, hormones, proteins, and organs. Palpable changes in fluid homeostasis can commonly be attributed to inflammation, where the changes in vasculature necessary to facilitate an immune response compromise the vascular endothelial barrier. Such changes, although transient, reveal the consequences of compromised vessel walls, leakage of plasma proteins, and collection of fluid in the interstitial space. Edema represents a pathological form of fluid extravasation into the interstitium and is a common clinical feature in many cases of malignancy. By examining common inflammatory factors secreted by the tumour, it becomes evident that the increased levels of such factors in patient sera could, indeed, influence a pro-edematous state. Therefore, it is the dynamics of the tumour itself in isolation of therapeutic side effects that can influence local and systemic vasculature by promoting a chronic inflammatory state characterized by leaky vasculature and dysregulated fluid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92:1005–60.

    Article  CAS  PubMed  Google Scholar 

  2. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Scallan J, Huxley VH, Korthuis RJ. Pathophysiology of edema formation. 2010. http://www.ncbi.nlm.nih.gov/books/NBK53445/.

  4. Gill JR, Waldmann TA, Bartter FC. Idiopathic edema: I. The occurrence of hypoalbuminemia and abnormal albumin metabolism in women with unexplained edema. Am J Med. 1972;52:444–51.

    Article  PubMed  Google Scholar 

  5. Lampugnani MG, et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol. 1995;129:203–17.

    Article  CAS  PubMed  Google Scholar 

  6. Brenner DA, Buck M, Feitelberg SP, Chojkier M. Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia. J Clin Invest. 1990;85:248–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.

    Article  CAS  PubMed  Google Scholar 

  8. Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability. Thromb Haemost. 2013;109:407–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951;167:13–46.

    CAS  PubMed  Google Scholar 

  10. Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol. 1986;102:1304–11.

    Article  CAS  PubMed  Google Scholar 

  11. Fleck A, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;1:781–4.

    Article  CAS  PubMed  Google Scholar 

  12. Senger DR, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  13. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.

    Article  CAS  PubMed  Google Scholar 

  14. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci. 1998;111(Pt 13):1853–65.

    CAS  PubMed  Google Scholar 

  15. Goldman J, et al. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol. 2007;292:H2176–83.

    Article  CAS  PubMed  Google Scholar 

  16. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46:5629–32.

    CAS  PubMed  Google Scholar 

  17. Brown LF, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol. 1995;26:86–91.

    Article  CAS  PubMed  Google Scholar 

  18. Brown LF, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res. 1993;53:4727–35.

    CAS  PubMed  Google Scholar 

  19. Dirix LY, et al. Serum basic fibroblast growth factor and vascular endothelial growth factor and tumour growth kinetics in advanced colorectal cancer. Ann Oncol Off J Eur Soc Med Oncol ESMO. 1996;7:843–8.

    Article  CAS  Google Scholar 

  20. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 1994;54:276–80.

    CAS  PubMed  Google Scholar 

  21. Yamamoto S, et al. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer. 1997;76:1221–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kondo S, Asano M, Matsuo K, Ohmori I, Suzuki H. Vascular endothelial growth factor/vascular permeability factor is detectable in the sera of tumor-bearing mice and cancer patients. Biochim Biophys Acta. 1994;1221:211–4.

    Article  CAS  PubMed  Google Scholar 

  23. Takano S, et al. Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res. 1996;56:2185–90.

    CAS  PubMed  Google Scholar 

  24. Dirix LY, et al. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br J Cancer. 1997;76:238–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Salven P, Mänpää H, Orpana A, Alitalo K, Joensuu H. Serum vascular endothelial growth factor is often elevated in disseminated cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 1997;3:647–51.

    CAS  Google Scholar 

  26. Yamamoto Y, et al. Concentrations of vascular endothelial growth factor in the sera of normal controls and cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res. 1996;2:821–6.

    CAS  Google Scholar 

  27. Salven P, Orpana A, Joensuu H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res Off J Am Assoc Cancer Res. 1999;5:487–91.

    CAS  Google Scholar 

  28. Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat. Rev. Imunol. 2004;4:641–648.

    Google Scholar 

  29. Kuroi K, Toi M. Circulating angiogenesis regulators in cancer patients. Int J Biol Markers. 2001;16:5–26.

    CAS  PubMed  Google Scholar 

  30. Banks RE, et al. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer. 1998;77:956–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Salgado R, et al. Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis. 2001;4:37–43.

    Article  CAS  PubMed  Google Scholar 

  32. Weis S, Cui J, Barnes L, Cheresh D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 2004;167:223–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64:327–36.

    Article  CAS  PubMed  Google Scholar 

  34. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J Off Publ Fed Am Soc Exp Biol. 1990;4:1577–90.

    CAS  Google Scholar 

  35. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997;91:439–42.

    Article  CAS  PubMed  Google Scholar 

  36. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999;103:1237–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Paiva KBS, Granjeiro JM. Bone tissue remodeling and development: Focus on matrix metalloproteinase functions. Arch Biochem Biophys. 2014;561:74–87.

    Article  CAS  PubMed  Google Scholar 

  38. Belotti D, et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells implications for ascites formation. Cancer Res. 2003;63:5224–9.

    CAS  PubMed  Google Scholar 

  39. Hiratsuka S, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell. 2002;2:289–300.

    Article  CAS  PubMed  Google Scholar 

  40. Hagemann T, et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis. 2004;25:1543–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bergers G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Roberts AB, McCune BK, Sporn MB. TGF-beta: regulation of extracellular matrix. Kidney Int. 1992;41:557–9.

    Article  CAS  PubMed  Google Scholar 

  43. Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90:2312–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhang GJ, Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res. 1999;19:1427–32.

    CAS  PubMed  Google Scholar 

  45. Dalaveris E, et al. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer. 2009;64:219–25.

    Article  PubMed  Google Scholar 

  46. Rundhaug JE, Park J, Pavone A, Opdenakker G, Fischer SM. Opposite effect of stable transfection of bioactive transforming growth factor-beta 1 (TGF beta 1) versus exogenous TGF beta 1 treatment on expression of 92-kDa type IV collagenase in mouse skin squamous cell carcinoma CH72 cells. Mol Carcinog. 1997;19:122–36.

    Article  CAS  PubMed  Google Scholar 

  47. Yang W-L, Godwin AK, Xu X-X. Tumor necrosis factor-alpha-induced matrix proteolytic enzyme production and basement membrane remodeling by human ovarian surface epithelial cells: molecular basis linking ovulation and cancer risk. Cancer Res. 2004;64:1534–40.

    Article  CAS  PubMed  Google Scholar 

  48. Hanemaaijer R, et al. Increased gelatinase-A and gelatinase-B activities in malignant vs. benign breast tumors. Int J Cancer J Int Cancer. 2000;86:204–7.

    Article  CAS  Google Scholar 

  49. Stuelten CH, et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-α and TGF-β. J Cell Sci. 2005;118:2143–53.

    Article  CAS  PubMed  Google Scholar 

  50. Goldberg PL, MacNaughton DE, Clements RT, Minnear FL, Vincent PA. p38 MAPK activation by TGF-beta1 increases MLC phosphorylation and endothelial monolayer permeability. Am J Physiol Lung Cell. Mol Physiol. 2002;282:L146–54.

    CAS  PubMed  Google Scholar 

  51. Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res. 1997;80:383–92.

    Article  CAS  PubMed  Google Scholar 

  52. Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci. 2008;1123:134–45.

    Article  CAS  PubMed  Google Scholar 

  53. Hurst V, Goldberg PL, Minnear FL, Heimark RL, Vincent PA. Rearrangement of adherens junctions by transforming growth factor-beta1: role of contraction. Am J Physiol. 1999;276:L582–95.

    CAS  PubMed  Google Scholar 

  54. Komarova Y, Malik AB. Regulation of Endothelial Permeability via Paracellular and Transcellular Transport Pathways. Annu Rev Physiol. 2010;72:463–93.

    Article  CAS  PubMed  Google Scholar 

  55. Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene. 1997;15:2169–77.

    Article  CAS  PubMed  Google Scholar 

  56. Pertovaara L, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem. 1994;269:6271–4.

    CAS  PubMed  Google Scholar 

  57. Padua D, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Huang R-L, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 2011;118:3990–4002.

    Article  CAS  PubMed  Google Scholar 

  59. Kang Y, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA. 2005;102:13909–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Jeltsch M, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276:1423–5.

    Article  CAS  PubMed  Google Scholar 

  61. Breslin JW, et al. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2007;293:H709–18.

    Article  CAS  PubMed  Google Scholar 

  62. Cao Y, et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA. 1998;95:14389–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Saaristo A, et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J Off Publ Fed Am Soc Exp Biol. 2002;16:1041–9.

    CAS  Google Scholar 

  64. Cao R, et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res. 2004;94:664–70.

    Article  CAS  PubMed  Google Scholar 

  65. Joukov V, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15:290–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Bates DO, Curry FE. Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. Am J Physiol Heart Circ Physiol. 1996;271:H2520–8.

    CAS  Google Scholar 

  67. Bates DO. An interstitial hypothesis for breast cancer related lymphoedema. Pathophysiology. 2010;17:289–94.

    Article  PubMed  Google Scholar 

  68. Rockson SG. Lymphedema. Am J Med. 2001;110:288–95.

    Article  CAS  PubMed  Google Scholar 

  69. Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep. 2002;4:250–5.

    Article  PubMed  Google Scholar 

  70. Siemes C, et al. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam study. J Clin Oncol. 2006;24:5216–22.

    Article  CAS  PubMed  Google Scholar 

  71. Lum H, Malik AB. Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol. 1996;74:787–800.

    CAS  PubMed  Google Scholar 

  72. Schoppmann SF, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161:947–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Levy Nogueira, M, et al. Mechanical stress as the common denominator between chronic inflammation, cancer, and Alzheimer’s disease. Mol Cell Oncol. 2015;197. doi:10.3389/fonc.2015.00197.

  74. Griffioen AW. Anti-angiogenesis: making the tumor vulnerable to the immune system. Cancer Immunol Immunother. 2008;57:1553–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol. 2002;3:27–34.

    Article  CAS  PubMed  Google Scholar 

  76. Blann, AD. Endothelial cell activation markers in cancer. Thromb. Res. 2012;129 Suppl 1:122–126.

    Google Scholar 

  77. Brock TA, Dvorak HF, Senger DR. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol. 1991;138:213–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Moore KL, Esmon CT, Esmon NL. Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood. 1989;73:159–65.

    CAS  PubMed  Google Scholar 

  79. Lindahl A, Boffa M, Abildgaard U. Increased plasma thrombomodulin in cancer patients. Thromb Haemost. 1993;69:112–4.

    CAS  PubMed  Google Scholar 

  80. Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.

    Article  CAS  PubMed  Google Scholar 

  81. Oberley TD, Oberley LW. Antioxidant enzyme levels in cancer. (1997). http://digitum.um.es/jspui/handle/10201/18951.

  82. Rajashekhar G, et al. Pro-inflammatory angiogenesis is mediated by p38 MAP kinase. J Cell Physiol. 2011;226:800–8.

    Article  CAS  PubMed  Google Scholar 

  83. Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol. 2002;156:149–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Stern R. Hyaluronan metabolism: a major paradox in cancer biology. Pathol Biol (Paris). 2005;53:372–82.

    Article  CAS  Google Scholar 

  85. Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol. 1999;277:H508–14.

    CAS  PubMed  Google Scholar 

  86. Genasetti A, et al. Hyaluronan and human endothelial cell behavior. Connect Tissue Res. 2008;49:120–3.

    Article  CAS  PubMed  Google Scholar 

  87. Wu M, et al. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J Off Publ Fed Am Soc Exp Biol. 2014;. doi:10.1096/fj.14-259978.

    Google Scholar 

  88. Schmaus A, et al. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer. 2014;111:559–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Schor SL, et al. Mechanism of action of the migration stimulating factor produced by fetal and cancer patient fibroblasts: effect on hyaluronic and synthesis. Vitro Cell Dev Biol J Tissue Cult Assoc. 1989;25:737–46.

    Article  CAS  Google Scholar 

  90. Decker M, et al. Hyaluronic acid-stimulating activity in sera from the bovine fetus and from breast cancer patients. Cancer Res. 1989;49:3499–505.

    CAS  PubMed  Google Scholar 

  91. Rosner MH, Dalkin AC. Electrolyte disorders associated with cancer. Adv Chronic Kidney Dis. 2014;21:7–17.

    Article  PubMed  Google Scholar 

  92. Onitilo AA, Kio E, Doi SAR. Tumor-related hyponatremia. Clin Med Res. 2007;5:228–37.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Berk L, Rana S. Hypovolemia and dehydration in the oncology patient. J Support Oncol. 2006;4:447–54 (discussion 455–457).

    PubMed  Google Scholar 

  94. Schrier RW. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med. 2006;119:S47–53.

    Article  CAS  PubMed  Google Scholar 

  95. Heldin C-H, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmit Singh .

Editor information

Editors and Affiliations

Definitions

Capillary hydrostatic pressure

drives fluid out of a vessel as a result of osmosis

Osmotic pressure

pressure exerted by the tendency of water to move from an area of low solute concentration to high solute concentration

Colloid osmotic pressure (oncotic pressure)

pressure resulting from the property causing water to move down a concentration gradient by diffusion through a semipermeable membrane from an area of low concentration to an area with a high concentration of high molecular weight molecules, namely proteins, that are unable to pass through the membrane [95]

Hydraulic conductivity

permeability of a vessel wall to water [95], the speed at which fluid will move through a tissue when a pressure gradient is applied [1]

Protein reflexion coefficient

permeability of a vessel wall to protein [95]

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fazzari, J., Singh, G. (2016). Cancer-Induced Edema/Lymphedema. In: Singh, G. (eds) Oncodynamics: Effects of Cancer Cells on the Body. Springer, Cham. https://doi.org/10.1007/978-3-319-28558-0_5

Download citation

Publish with us

Policies and ethics