Skip to main content

Cancer and Angiogenesis

  • Chapter
  • First Online:
Oncodynamics: Effects of Cancer Cells on the Body
  • 475 Accesses

Abstract

Neoplastic growth is closely linked to neovascularization, as efficient blood supply is necessary to deliver oxygen and nutrients to a tumour. The development of blood vessels in tumours is modulated by pro- and anti-angiogenic factors. Pro-angiogenic factors include those that regulate remodelling of the extracellular matrix (ECM) and changes in perivascular cell structure, as well as those that promote endothelial cell changes and migration, including but not limited to vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and angiopoietin. Anti-angiogenic factors include thrombospondin, 16kDA N-terminal fragments of prolactin and growth hormone, endostatin, vasostatin, and angiostatin. During tumour growth, the balance is tipped in favour of pro-angiogenic factors. This is known as the angiogenic switch and allows for increased tumour progression, a state where proliferation is favoured over apoptosis. The angiogenic switch may thus be considered as the rate-limiting step in the tumour metastasis pathway. Furthermore, this switch is highly dependent on changes in the tumour microenvironment. The tumour microenvironment continues to increase in significance in angiogenesis research and understanding it holds the key to new and more successful anti-angiogenic cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADM:

Adrenomedullin

Ang:

Angiopoetin

Akt:

Protein kinase B

APC:

Antigen-presenting cells

bFGF:

Basic fibroblast growth factor

CAF:

Cancer-associated fibroblasts

CCL2 CC:

Chemokine ligand 2

CSF-1:

Colony-stimulating factor-1

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinases

FAK:

Focal adhesion kinase

HER:

Human epidermal receptor

ICAM-1:

Intercellular adhesion molecule-1

IL1β:

Interleukin 1β

mCAF:

Mammary CAF

MDSC:

Myeloid-derived suppressor cell

MMP:

Matrix metalloproteinase

MT1-MMP:

Membrane-type1 matrix metalloproteinase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NK cells:

Natural killer cells

PA:

Tissue-type plasminogen activators

PAI-1:

PA inhibitior-1

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PlGF:

Placenta growth factor

PMP:

Platelet-derived microparticles

SDF-1:

Stromal cell-derived factor 1

TEM:

Monocytes expressing TIE-2 receptors

TGFα:

Transforming growth factor α

TGFβ-1:

Transforming growth factor β1

TME:

Tumour mircoenvironment

TNF-α:

Tumour necrosis factor α

TP:

Thymididine phosphorylase

Sema4D:

Semaphoring 4D

uPA:

Urokinase-type plasminogen activator

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VPF:

Tumour vascular permeability factor

References

  1. Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26(3–4):489–502.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004;231(3):474–88.

    Article  PubMed  Google Scholar 

  3. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  4. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LMG, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155(3):739–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347–62.

    Article  CAS  PubMed  Google Scholar 

  6. Lin EY, Li J-F, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46.

    Article  CAS  PubMed  Google Scholar 

  7. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest. 2002;109(6):777–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15–35; discussion 35–6.

    Google Scholar 

  9. Van der Meel R, Symons MH, Kudernatsch R, Kok RJ, Schiffelers RM, Storm G, et al. The VEGF/Rho GTPase signalling pathway: a promising target for anti-angiogenic/anti-invasion therapy. Drug Discov Today. 2011;16(5–6):219–28.

    Article  PubMed  Google Scholar 

  10. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gacche RN, Meshram RJ. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol. 2013;113(2):333–54.

    Article  CAS  PubMed  Google Scholar 

  12. Alameddine RS, Hamieh L, Shamseddine A. From sprouting angiogenesis to erythrocytes generation by cancer stem cells: evolving concepts in tumor microcirculation. Biomed Res Int. 2014;2014:986768.

    Article  PubMed Central  PubMed  Google Scholar 

  13. van Hinsbergh VWM, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12.

    Article  PubMed  Google Scholar 

  14. Paku S, Dezső K, Bugyik E, Tóvári J, Tímár J, Nagy P, et al. A new mechanism for pillar formation during tumor-induced intussusceptive angiogenesis: inverse sprouting. Am J Pathol. 2011;179(3):1573–85.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005;7(4):452–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 1977;14(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  17. Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis. 2009;12(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  18. Auguste P, Lemiere S, Larrieu-Lahargue F, Bikfalvi A. Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol. 2005;54(1):53–61.

    Article  PubMed  Google Scholar 

  19. Hlushchuk R, Ehrbar M, Reichmuth P, Heinimann N, Styp-Rekowska B, Escher R, et al. Decrease in VEGF expression induces intussusceptive vascular pruning. Arterioscler Thromb Vasc Biol. 2011;31(12):2836–44.

    Article  CAS  PubMed  Google Scholar 

  20. Hlushchuk R, Makanya AN, Djonov V. Escape mechanisms after antiangiogenic treatment, or why are the tumors growing again? Int J Dev Biol. 2011;55(4–5):563–7.

    Article  CAS  PubMed  Google Scholar 

  21. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003;163(5):1801–15.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    Article  CAS  PubMed  Google Scholar 

  23. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160(3):985–1000.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization. FASEB J. 2011;25(9):2874–82.

    Article  CAS  PubMed  Google Scholar 

  25. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15(1):102–11.

    Article  CAS  PubMed  Google Scholar 

  26. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  CAS  PubMed  Google Scholar 

  27. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255(5047):989–91.

    Article  PubMed  Google Scholar 

  28. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56(3):794–814.

    Article  CAS  PubMed  Google Scholar 

  29. Shibuya M. VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul). 2014;22(1):1–9.

    Article  CAS  Google Scholar 

  30. Qi L, Xing LN, Wei X, Song SG. Effects of VEGF suppression by small hairpin RNA interference combined with radiotherapy on the growth of cervical cancer. Genet Mol Res. 2014;13(3):5094–106.

    Article  CAS  PubMed  Google Scholar 

  31. Rinck-Junior JA, Oliveira C, Lourenço GJ, Sagarra RAM, Derchain SFM, Segalla JG, et al. Vascular endothelial growth factor (VEGF) polymorphism and increased risk of epithelial ovarian cancer. J Cancer Res Clin Oncol. 2014 Aug 5.

    Google Scholar 

  32. Piccolo E, Tinari N, Semeraro D, Traini S, Fichera I, Cumashi A, et al. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J Mol Med. 2013;91(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  33. Salven P, Orpana A, Joensuu H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res. 1999;5(3):487–91.

    CAS  PubMed  Google Scholar 

  34. Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol. 1995;105(1):44–50.

    Google Scholar 

  35. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Giordano G, Febbraro A, Venditti M, Campidoglio S, Olivieri N, Raieta K, et al. Targeting angiogenesis and tumor microenvironment in metastatic colorectal cancer: role of aflibercept. Gastroenterol Res Pract. 2014;2014:526178.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Li X, Lee C, Tang Z, Zhang F, Arjunan P, Li Y, et al. VEGF-B. Cell Adh Migr. 2009;3(4):322–7.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci USA. 2009;106(15):6152–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–78.

    Article  CAS  PubMed  Google Scholar 

  40. Laschke MW, Elitzsch A, Vollmar B, Vajkoczy P, Menger MD. Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod. 2006;21(1):262–8.

    Article  CAS  PubMed  Google Scholar 

  41. Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012;122(6):1991–2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol (Internet). 2014 Mar 5 [cited 2014 May 14];5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942647/.

  43. Rigamonti N, Kadioglu E, Keklikoglou I, Wyser Rmili C, Leow CC, De Palma M. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Reports. 2014;8(3):696–706.

    Google Scholar 

  44. Helfrich I, Edler L, Sucker A, Thomas M, Christian S, Schadendorf D, et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res. 2009;15(4):1384–92.

    Article  CAS  PubMed  Google Scholar 

  45. Goede V, Coutelle O, Neuneier J, Reinacher-Schick A, Schnell R, Koslowsky TC, et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer. 2010;103(9):1407–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Daly C, Eichten A, Castanaro C, Pasnikowski E, Adler A, Lalani AS, et al. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res. 2013;73(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  47. Park JH, Park KJ, Kim YS, Sheen SS, Lee KS, Lee HN, et al. Serum angiopoietin-2 as a clinical marker for lung cancer. Chest. 2007;132(1):200–6.

    Article  CAS  PubMed  Google Scholar 

  48. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17):2123–33.

    Article  CAS  PubMed  Google Scholar 

  49. Alexius-Lindgren M, Andersson E, Lindstedt I, Engström W. The RECK gene and biological malignancy-its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res. 2014;34(8):3867–73.

    CAS  PubMed  Google Scholar 

  50. Takagi S, Simizu S, Osada H. RECK negatively regulates matrix metalloproteinase-9 transcription. Cancer Res. 2009;69(4):1502–8.

    Article  CAS  PubMed  Google Scholar 

  51. Takenaka K, Ishikawa S, Kawano Y, Yanagihara K, Miyahara R, Otake Y, et al. Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. Eur J Cancer. 2004;40(10):1617–23.

    Article  CAS  PubMed  Google Scholar 

  52. Varon D, Hayon Y, Dashevsky O, Shai E. Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res. 2012;130(Suppl 1):S98–9.

    Article  PubMed  Google Scholar 

  53. Brass LF. Thrombin and platelet activation. Chest. 2003;124(3 Suppl):18S–25S.

    Article  CAS  PubMed  Google Scholar 

  54. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11(4):2449–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Res. 2011;71(21):6561–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal. 2011;16(11):1264–84.

    Article  PubMed  Google Scholar 

  57. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  58. Raz Y, Erez N. An inflammatory vicious cycle: fibroblasts and immune cell recruitment in cancer. Exp Cell Res. 2013;319(11):1596–603.

    Article  CAS  PubMed  Google Scholar 

  59. Martens JWM, Sieuwerts AM, Bolt-deVries J, Bosma PT, Swiggers SJJ, Klijn JGM, et al. Aging of stromal-derived human breast fibroblasts might contribute to breast cancer progression. Thromb Haemost. 2003;89(2):393–404.

    CAS  PubMed  Google Scholar 

  60. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8(23):3984–4001.

    Article  CAS  PubMed  Google Scholar 

  62. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 2012;133(2):459–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Luo H, Tu G, Liu M, Liu Z. Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Letters (Internet). (cited 2015 Feb 27); Available from: http://www.sciencedirect.com/science/article/pii/S0304383515001214.

  64. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 2004;64(22):8249–55.

    Article  CAS  PubMed  Google Scholar 

  65. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J. 2003;17(9):1159–61.

    CAS  PubMed  Google Scholar 

  66. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829–33.

    Article  CAS  PubMed  Google Scholar 

  67. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183–232.

    Article  CAS  PubMed  Google Scholar 

  68. Ellis LM. Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am. 2004;18(5):1007–21, viii.

    Google Scholar 

  69. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992;13(7):265–70.

    Article  CAS  PubMed  Google Scholar 

  70. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  71. Ding Y, Song N, Luo Y. Role of bone marrow-derived cells in angiogenesis: focus on macrophages and pericytes. Cancer Microenvironment. 2012;5(3):225–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol. 2003;171(5):2637–43.

    Article  CAS  PubMed  Google Scholar 

  73. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miller, F., Singh, G. (2016). Cancer and Angiogenesis. In: Singh, G. (eds) Oncodynamics: Effects of Cancer Cells on the Body. Springer, Cham. https://doi.org/10.1007/978-3-319-28558-0_2

Download citation

Publish with us

Policies and ethics