Skip to main content

Neurosemantics of Visual Objects

  • Chapter
  • First Online:
  • 443 Accesses

Part of the book series: Studies in Brain and Mind ((SIBM,volume 10))

Abstract

Humans, like several other primates, are visual creatures, and almost half of our neurons are devoted to the processing of visual signals. The excellence found in our ability to do so, is not just due to our ophthalmological capabilities, which are outperformed by other species, such as birds, it is instead on the semantic side, in our ability to classify hundreds of object categories on the basis of their visual appearance only. Vision has historically been the earliest and most investigated function in the brain, thanks to its unique correspondence between the two dimensional organization of the distal stimulus and cortical processing units. Taken together, these two factors have led us to investigating the semantics of objects whose essential features are captured by their visual appearance. The first model presented in this chapter is a sort of prelude to a full blown semantics, with a simulation of the full visual pathway that brings light signals into recognition of object categories, together with the auditory pathway, in a simulation of the emergence of a first lexicon, that in infants begins exactly with visual objects. Most of the components of this model, and the methods used for its development and subsequent analyses, will be shared by the models that follow. The second model presented in this chapter, taps into a range of semantic phenomena typically observed in the early stages of language development in children, such as the change in the speed of learning, and the so called “fast-mapping” phenomenon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashby, F. G., & Spiering, B. J. (2004). The neurobiology of category learning. Behavioral and Cognitive Neuroscience Reviews, 3, 101–113.

    Article  Google Scholar 

  • Bates, E., Dal, P. S., & Thal, D. (1995). Individual differences and their implications for theories of language development. In P. Fletcher & B. M. Whinney (Eds.), Handbook of child language (pp. 96–151). Oxford: Basil Blackwell.

    Google Scholar 

  • Bednar, J. A., & Miikkulainen, R. (2004). Prenatal and postnatal development of laterally connected orientation maps. Neurocomputing, 58, 985–992.

    Article  Google Scholar 

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.

    Article  Google Scholar 

  • Black, A. W., & Taylor, P. A. (1997). The festival speech synthesis system: System documentation. Technical report HCRC/TR-83, Human Communication Research Centre, University of Edinburgh, Edinburgh.

    Google Scholar 

  • Bloom, P. (2000). How children learn the meanings of words. Cambridge: MIT.

    Google Scholar 

  • Bornstein, M. H., & RCote, L. (2004). Cross-linguistic analysis of vocabulary in young children: Spanish, Dutch, French, Hebrew, Italian, Korean, and American english. Child Development, 75, 1115–1139.

    Article  Google Scholar 

  • Brown, M. C. (2003). Audition. In L. R. Squire, F. Bloom, S. McConnell, J. Roberts, N. Spitzer, & M. Zigmond (Eds.), Fundamental neuroscience (pp. 699–726). New York: Academic.

    Google Scholar 

  • Carey, S. (1978). The child as word learner. In M. Halle, J. Bresnan, & G. Miller (Eds.), Linguistic theory and psychological reality (pp. 264–293). Cambridge: MIT.

    Google Scholar 

  • Carey, S., & Spelke, E. (1996). Science and core knowledge. Journal of Philosophy of Science, 63, 515–533.

    Article  Google Scholar 

  • Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience, 16, 6443–6453.

    Google Scholar 

  • Deco, G., & Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621–642.

    Article  Google Scholar 

  • Dickinson, D. K. (1984). First impressions: Children’s knowledge of words gained from a single exposure. Applied Psycholinguistics, 5, 359–373.

    Article  Google Scholar 

  • Dowling, J. E. (1987). The retina: An approachable part of the brain. Cambridge: Cambridge University Press.

    Google Scholar 

  • Edelman, S., & Duvdevani-Bar, S. (1997). A model of visual recognition and categorization. Philosophical Transactions of the Royal Society of London, 352, 1191–1202.

    Article  Google Scholar 

  • Eimas, P. D., & Quinn, P. C. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 3, 903–917.

    Article  Google Scholar 

  • Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness a connectionist perspective on development. Cambridge: MIT.

    Google Scholar 

  • Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. Journal of Neuroscience, 33, 10,552–10,558.

    Article  Google Scholar 

  • Farah, M. J. (1990). Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge: MIT.

    Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.

    Article  Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. Journal of Neurophysiology, 88, 929–941.

    Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). New York: Academic.

    Google Scholar 

  • Ganger, J., & Brent, M. R. (2004). Reexamining the vocabulary spurt. Developmental Psychology, 40, 621–632.

    Article  Google Scholar 

  • Gershkoff-Stowe, L., & Smith, L. B. (2004). Shape and the first hundred nouns. Child Development, 75, 1098–1114.

    Article  Google Scholar 

  • Gödecke, I., & Bonhoeffer, T. (1996). Development of identical orientation maps for two eyes without common visual experience. Nature, 379, 251–254.

    Article  Google Scholar 

  • Grassman, S., Stracke, M., & Tomasello, M. (2009). Two year olds exclude novel objects as potential referents of novel words based on pragmatics. Cognition, 112, 488–493.

    Article  Google Scholar 

  • Huey, E. D., Krueger, F., & Grafman, J. (2006). Representations in the human prefrontal cortex. Current Directions in Psychological Science, 15, 167–171.

    Article  Google Scholar 

  • Kashimori, Y., Ichinose, Y., & Fujita, K. (2007). A functional role of interaction between IT cortex and PF cortex in visual categorization task. Neurocomputing, 70, 1813–1818.

    Article  Google Scholar 

  • Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.

    Article  Google Scholar 

  • Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain it cortical representation. PLoS Computational Biology, 10, e1003,915.

    Article  Google Scholar 

  • Kripke, S. A. (1972). Naming and necessity. In D. Davidson & G. H. Harman (Eds.), Semantics of natural language (pp. 253–355). Dordrecht: Reidel Publishing.

    Chapter  Google Scholar 

  • Lifter, K., & Bloom, L. (1989). Object knowledge and the emergence of language. Infant Behavior and Development, 12, 395–423.

    Article  Google Scholar 

  • Mandler, J. M. (2004). The foundations of mind. Oxford: Oxford University Press.

    Google Scholar 

  • Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. Spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.

    Google Scholar 

  • Mayor, J., & Plunkett, K. (2010). A neurocomputational account of taxonomic responding and fast mapping in early word learning. Psychological Review, 117, 1–31.

    Article  Google Scholar 

  • Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions: Biological Sciences, 357, 1123–1136.

    Article  Google Scholar 

  • Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289–316.

    Article  Google Scholar 

  • Näger, C., Storck, J., & Deco, G. (2002). Speech recognition with spiking neurons and dynamic synapses: A model motivated by the human auditory pathway. Neurocomputing, 44–46, 937–942.

    Article  Google Scholar 

  • Nayar, S., & Murase, H. (1995). Visual learning and recognition of 3-d object by appearance. International Journal of Computer Vision, 14, 5–24.

    Article  Google Scholar 

  • Pereira, A. F., Smith, L. B., & Yu, C. (2014). A bottom-up view of toddler word learning. Psychon Bulletin Review, 21, 178–185.

    Article  Google Scholar 

  • Plebe, A. (2007a). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.

    Article  Google Scholar 

  • Plebe, A. (2007b). A neural model of object naming. Enformatika, 2, 130–135.

    Google Scholar 

  • Plebe, A. (2012). A model of the response of visual area V2 to combinations of orientations. Network: Computation in Neural Systems, 23, 105–122.

    Google Scholar 

  • Plebe, A., Domenella, R. G. (2005). The emergence of visual object recognition. In W. Duch, J. Kacprzyk, E. Oja, S. Zadrony (Eds.), Artificial Neural Networks – ICANN 2005 15th International Conference, Warsaw (pp. 507–512). Berlin: Springer.

    Chapter  Google Scholar 

  • Plebe, A., Domenella, R. G. (2006). Early development of visual recognition. BioSystems, 86, 63–74.

    Article  Google Scholar 

  • Plebe, A., Domenella, R. G. (2007). Object recognition by artificial cortical maps. Neural Networks, 20, 763–780.

    Article  Google Scholar 

  • Plebe, A., De La Cruz, V. M., & Mazzone, M. (2007). Artificial learners of objects and names. In Y. Demiris, B. Scassellati, & D. Mareschal (Eds.), Proceedings of the 6th International Conference on Development and Learning, IEEE (pp. 300–305). London: Imperial College.

    Google Scholar 

  • Plebe, A., Mazzone, M., & De La Cruz, V. M. (2010). First words learning: A cortical model. Cognitive Computation, 2, 217–229.

    Article  Google Scholar 

  • Plebe, A., Mazzone, M., & De La Cruz, V. M. (2011). A biologically inspired neural model of vision-language integration. Neural Network World, 21, 227–249.

    Article  Google Scholar 

  • Plunkett, K. (1993). Lexical segmentation and vocabulary growth in early language acquisition. Journal of Child Language, 20, 43–60.

    Article  Google Scholar 

  • Putnam, H. (1975). The meaning of “meaning”. In H. Putnam, Mind, language and reality (Vol. 2, pp. 215–271). Cambridge: MIT.

    Google Scholar 

  • Regier, T. (2005). The emergence of words: Attentional learning in form and meaning. Cognitive Science, 29, 819–865.

    Article  Google Scholar 

  • Riesenhuber, M., & Poggio, T. (2000). Models of object recognition. Nature Neuroscience, 3, 1199–1204.

    Article  Google Scholar 

  • Rogers, T. T., & McClelland, J. L. (2006). Semantic cognition – A parallel distributed processing approach. Cambridge: MIT.

    Google Scholar 

  • Rolls, E. T., & Stringer, S. M. (2006). Invariant visual object recognition: A model, with lighting invariance. Journal of Physiology – Paris, 100, 43–62.

    Article  Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (Eds.) (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge: MIT.

    Google Scholar 

  • Smith, L. B. (2001). How domain-general processes may create domain-specific biases. In M. Bowerman & S. Levinson (Eds.), Language acquisition and conceptual development. Cambridge: Cambridge University Press.

    Google Scholar 

  • Taylor, N. R., Hartley, M., & Taylor, J. G. (2005). Coding of objects in low-level visual cortical areas. In W. Duch, J. Kacprzyk, E. Oja, & S. Zadrony (Eds.), 15th international conference proceedings artificial neural networks (ICANN ’05) (pp. 57–63). Berlin: Springer.

    Google Scholar 

  • Thompson, I. (1997). Cortical development: A role for spontaneous activity? Current Biology, 7, 324–326.

    Article  Google Scholar 

  • Tomasello, M. (1999). The cultural origins of human cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge: Harvard University Press.

    Google Scholar 

  • Volkmer, M. (2004). A pulsed neural network model of spectro-temporal receptive fields and population coding in auditory cortex. Neural Computing, 3, 177–193.

    Google Scholar 

  • Wallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51, 167–194.

    Article  Google Scholar 

  • Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: Processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–147.

    Article  Google Scholar 

  • Yu, C., Smith, L. B. (2012). Embodied attention and word learning by toddlers. Cognition, 125, 244–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plebe, A., De La Cruz, V.M. (2016). Neurosemantics of Visual Objects. In: Neurosemantics. Studies in Brain and Mind, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-28552-8_6

Download citation

Publish with us

Policies and ethics