Skip to main content

Hydrophyllaceae

Hydrophyllaceae R. Br., Bot. Reg. 3: ad t. 242 (1817), as Hydrophylleae, nom. cons.

  • Chapter
  • First Online:
Book cover Flowering Plants. Eudicots

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 14))

Abstract

Annual, biennial or perennial herbs, subshrubs, shrubs, rarely small trees (Wigandia), often aromatic; primary root usually persistent and developed as strong taproot, sometimes roots tuberous; stems erect, rarely prostrate to ascending, sometimes forming simple or few- to many-branched rhizomes; indumentum usually present and strongly developed on whole plant, usually scabrid to hispid, often densely glandular, sometimes distinct stinging hairs present. Leaves alternate or opposite, basal and/or cauline, exstipulate, lamina linear, narrowly ovate to subcircular, simple to compound, margins entire or variously lobed, sessile to petiolate. Inflorescences terminal or axillary, frondose, bracteose or ebracteose, paraclades monochasial or dichasial, lax or very dense, usually scorpioid and contracted into boragoids, these paraclades present as simple terminal inflorescences or combined into complex thyrsoids, sometimes with extensive accessory paraclades; sometimes inflorescences congested into terminal “heads”, or strongly reduced to axillary or terminal single flowers. Flowers pentamerous, usually hypogynous, bisexual, commonly protandrous; perianth biseriate, sepals united at base or nearly to apex, usually radially symmetrical, sometimes slightly or distinctly unequal with some lobes much larger than others, with or without appendages between the lobes, persistent and usually accrescent in fruit, spreading or closing; corolla sympetalous, mostly campanulate, more rarely rotate or infundibuliform, tube internally often with scales, glands or hair lines near base of each filament; lobes spreading or porrect, rarely reflexed, narrowly triangular to (usually) oblong or subcircular; aestivation usually quincuncial, rarely contorted; stamens epipetalous and antesepalous, inserted at the same or at different heights in corolla tube, anthers included or exserted, free from each other, dorsifixed, dithecous, tetrasporangiate, opening by longitudinal slits; gynoecium 2-carpellate, syncarpous, superior to half-inferior, pubescent, often glandular, usually with basal nectar disk; stylodia 2 or connate into a usually bifid or deeply bifurcate, rarely entire, slender style; stigma punctate or capitate, dry; ovules (1–)4–∞, anatropous, unitegmic, tenuinucellate; placentation parietal or intrusive-parietal. Fruits 1- to many-seeded capsules, 2–4-valved, with loculicidal or loculicidal and septicidal dehiscence, rarely indehiscent. Seeds ovoid, globose or angular, with dark, often reticulate testa, endosperm copious, oily, rarely with elaiosome; embryo small, straight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hydrophyllaceae including tribe Nameae (Eriodictyon Benth., Nama, L., Wigandia Kunth) are doubtfully monophyletic. Segregation of tribe Nameae as a separate family could resolve this issue.

Selected Bibliography

  • Anonymous. 2007. Status of pollinators in North America. National Research Council (U.S.). Committee on the Status of Pollinators in North America. National Academy of Science, Washington DC, 307 pp.

    Google Scholar 

  • APG III 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot. J. Linn. Soc. 161: 105–121.

    Article  Google Scholar 

  • Armstrong, V.A. 1992. Site characteristics and habitat requirements of the endangered clay phacelia (Phacelia argillacea Atwood, Hydrophyllaceae) and aspects of the biology of Phacelia argillacea Atwood (Hydrophyllaceae), an annual. M.S. Thesis, Biology, Brigham Young University, Provo UT.

    Google Scholar 

  • Atwood, N.D. 1975. A revision of the Phacelia crenulata group (Hydrophyllaceae) for North America. Great Basin Nat. 35: 127–191.

    Google Scholar 

  • Bacon, J.D. 1974. Chromosome numbers and taxonomic notes on the genus Nama (Hydrophyllaceae). Brittonia 26: 101–105.

    Article  Google Scholar 

  • Bacon, J.D. 1986. Chemosystematics of the Hydrophyllaceae: flavonoids of three species of Eriodictyon. Biochem. Syst. Ecol. 14: 591–595.

    Article  CAS  Google Scholar 

  • Bacon, J.D., Bragg, L.H., Hannan, G.L. 1986a. Systematics of Nama (Hydrophyllaceae): Comparison of seed morphology of sects. Arachnoidea and Cinerascentia with five species of Eriodictyon and Turricula parryi. Sida 11: 271–281.

    Google Scholar 

  • Bacon, J.D., Fang, N., Mabry, T.J. 1986b. Systematics of Nama (Hydrophyllaceae): flavonoids and phyletic position of sect. Arachnoidea and sect. Cinerascentia. Plant Syst. Evol. 151: 223–228.

    Article  CAS  Google Scholar 

  • Baskin, J.M., Baskin, C.C. 1973. Delayed germination in seeds of Phacelia dubia var. dubia. Can. J. Bot. 51: 2481–2486.

    Article  Google Scholar 

  • Baskin, J.M., Baskin, C.C. 1983. Germination ecophysiology of eastern deciduous forest herbs: Hydrophyllum macrophyllum. Am. Midl. Nat. 109: 63–71.

    Article  Google Scholar 

  • Beckmann, R.L. 1979. Biosystematics of the genus Hydrophyllum L. (Hydrophyllaceae). Am. J. Bot. 66: 1053–1061.

    Article  CAS  Google Scholar 

  • Berg, R.Y. 1985. Gynoecium and development of embryo sac, endosperm, and seed in Pholistoma (Hydrophyllaceae) relative to taxonomy. Am. J. Bot. 72: 1775–1787.

    Article  Google Scholar 

  • Berg, R.Y. 2009. Embryo sac, endosperm, and seed of Nemophila (Boraginaceae) relative to taxonomy, with a remark on embryogeny in Pholistoma. Am. J. Bot. 96: 565–579.

    Article  PubMed  Google Scholar 

  • Berry, C.Z., Dahlen, R.F., Shapiro, S.I. 1962. Dermatitis venenata from Phacelia crenulata. Arch. Dermatol. 85: 737.

    Article  CAS  PubMed  Google Scholar 

  • Biswell, H.H., Gilman, J.H. 1961. Brush management in relation to fire and other environmental factors on the Tehama deer winter range. Calif. Fish Game 47: 357–389.

    Google Scholar 

  • Bohm, B.A., Constant, H. 1990. Leaf surface flavonoids of Eriodictyon trichocalyx. Biochem. Syst. Ecol.18: 491–492.

    Article  CAS  Google Scholar 

  • Brand, A. 1913. Hydrophyllaceae. In: Pflanzenreich 59, IV. 251. Leipzig: W. Engelmann. 210 pp.

    Google Scholar 

  • Carlquist, S. 1992. Wood anatomy of sympetalous dicotyledon families: A summary, with comments on systematic relationships and evolution of the woody habit. Ann. Missouri Bot. Gard.79: 303–332.

    Article  Google Scholar 

  • Carlquist, S., Eckhart, V.M. 1984. Wood anatomy of Hydrophyllaceae. II. Genera other than Eriodictyon, with comments on parenchyma bands containing vessels with large pits. Aliso 10: 527–546.

    Google Scholar 

  • Carlquist, S., Eckhart, V.M., Michener, D.C. 1983. Wood anatomy of Hydrophyllaceae. I. Eriodictyon. Aliso 10: 397–412.

    Google Scholar 

  • Cave, M.S., Constance, L. 1950. Chromosome numbers in the Hydrophyllaceae: IV. Univ. Calif. Publ. Bot. 23: 363–382.

    Google Scholar 

  • Chuang, T.I., Constance, L. 1992. Seeds and systematics in Hydrophyllaceae: Tribe Hydrophylleae. Am. J. Bot. 79: 257–264.

    Article  Google Scholar 

  • Constance, L. 1938. The genus Eucrypta Nuttall. Lloydia 1: 143–152.

    Google Scholar 

  • Constance, L. 1941. The genus Nemophila Nuttall Univ. Calif. Publ. Bot. 19: 341–398.

    Google Scholar 

  • Constance, L. 1963. Chromosome number and classification in Hydrophyllaceae. Brittonia 15: 273–285.

    Article  Google Scholar 

  • Constance, L., Chuang, T.I. 1982. SEM survey of pollen morphology and classification in Hydrophyllaceae (waterleaf family). Am. J. Bot. 69: 40–53.

    Article  Google Scholar 

  • Cruden, R.W. 1972a. Information on chemistry and pollination biology relevant to the systematics of Nemophila menziesii (Hydrophyllaceae). Madroño 21: 505–516.

    Google Scholar 

  • Cruden, R.W. 1972b. Pollination biology of Nemophila menziesii with comments on the evolution of oligolectic bees. Evolution 26: 373–389.

    Article  Google Scholar 

  • Davenport, L.J. 1988. A monograph of Hydrolea (Hydrophyllaceae). Rhodora 90: 169–208.

    Google Scholar 

  • Deginani, N.B. 1982. Revisión de las especies argentinas del género Phacelia (Hydrophyllaceae). Darwiniana 24: 405–496.

    Google Scholar 

  • del Castillo, R.F. 1993. Consequences of male sterility in Phacelia dubia. Evol. Trend Plants 7: 15–22.

    Google Scholar 

  • del Castillo, R.F. 1994. Factors influencing the genetic structure of Phacelia dubia, a species with a seed bank and large fluctuations in population size. Heredity 72: 446–458.

    Article  Google Scholar 

  • del Castillo, R.F. 1998. Fitness consequences of maternal and nonmaternal components of inbreeding in the gynodioecious Phacelia dubia. Evolution 52: 44–60.

    Article  Google Scholar 

  • del Castillo, R.F., Trujillo, S. 2009. Evidence of restoration cost in the annual gynodioecious Phacelia dubia. Evol. Biol. 22: 306–313.

    Article  Google Scholar 

  • Des Granges, J. 1979. Organization of a tropical nectar feeding bird guild in a variable tropical environment. Living Bird 17: 199–236.

    Google Scholar 

  • Di Fulvio, T.E. 1987. La endospermogénesis en Hydrophylleae (Hydrophyllaceae) con relación a la taxonomía. Kurtziana 19: 13–34.

    Google Scholar 

  • Di Fulvio, T.E. 1989. Embriología de Nama jamaicense (Phacelieae, Hydrophyllaceae). Kurtziana 20: 9–31.

    Google Scholar 

  • Di Fulvio, T.E. 1993. Embriología de Lemmonia californica (Phacelieae). Kurtziana 22: 19–30.

    Google Scholar 

  • Di Fulvio, T.E., Dottori, N. 1995. Contribución al conocimiento de tricomas y emergencias en Hydrophyllaceae. Clasificación y consideraciones taxonómicas. Kurtziana 24: 19–24.

    Google Scholar 

  • Eckhart, V.M. 1991. The effects of floral display on pollinator visitation vary among populations of Phacelia linearis (Hydrophyllaceae). Evol. Ecol. 5: 370–384.

    Article  Google Scholar 

  • Eckhart, V.M. 1992. The genetics of gender and the effects of gender on floral characters in gynodioecious Phacelia linearis (Hydrophyllaceae). Am. J. Bot. 79: 792–800.

    Article  Google Scholar 

  • Elam, D.R. 1994. Genetic variation and reproductive output in plant populations: effects of population size and incompatibility (Lilium parryi, Lilium humboldtii, Raphanus sativus, Eriodictyon capitatum). Ph.D. Dissertation, University of California, Riverside CA, 221 pp.

    Google Scholar 

  • Erbar, C., Porembski, S., Leins, P. 2005. Contributions to the systematic position of Hydrolea (Hydroleaceae) based on floral development. Plant Syst. Evol. 252: 71–83.

    Google Scholar 

  • Ferguson, D.M. 1998. Phylogenetic analysis and relationships in Hydrophyllaceae based on ndhF sequence data. Syst. Bot. 23: 253–268.

    Article  Google Scholar 

  • Ganders, F.R. 1978. The genetics and evolution of gynodioecy in Nemophila menziesii (Hydrophyllaceae). Can. J. Bot. 56: 1400–1408.

    Article  Google Scholar 

  • Gibson, D.N. 1967. Hydrophyllaceae. In: Macbride, J.F. (ed.) Flora of Peru. Publ. Field Mus. Nat. Hist., Bot. Ser. 13, part V–A, no. 2: 101–131.

    Google Scholar 

  • Gilbert, C., Dempcy, J.M., Ganong, C.K., Patterson, R., Spicer, G.S. 2005. Phylogenetic relationships within Phacelia subgenus Phacelia (Hydrophyllaceae) inferred from nuclear rDNA ITS sequence data. Syst. Bot. 30: 627–634.

    Article  Google Scholar 

  • Gillett, G.W. 1955. Variation and genetic relationships in the Whitlavia and Gymnobythus phacelias. Univ. Calif. Publ. Bot. 28: 19–78.

    Google Scholar 

  • Gillett, G.W. 1960. A systematic treatment of the Phacelia franklinii group. Rhodora 62: 205–222.

    Google Scholar 

  • Gillett, G.W. 1968. Systematic relationships in the Cosmanthus phacelias (Hydrophyllaceae). Brittonia 20: 368–374.

    Article  Google Scholar 

  • Gray, A. 1875. A conspectus of the North American Hydrophyllaceae. Proc. Am. Acad. Arts Sci. 10: 312–332.

    Article  Google Scholar 

  • Greene, E.L. 1902. Revision of Romanzoffia. Pittonia 5: 34–42.

    Google Scholar 

  • Hadley, W.J., Gisvold, O. 1944. A phytochemical study of Eriodictyon angustifolium, Nutt. J. Am. Pharm. Assoc. Sci. Ed. 33: 275–277.

    Google Scholar 

  • Halse, R.R. 1979. Taxonomy of Phacelia sect. Miltitzia (Hydrophyllaceae). Ph.D. Dissertation, Biology, Oregon State University, Corvallis OR.

    Google Scholar 

  • Halse, R.R. 1981. Taxonomy of Phacelia sect. Miltitzia (Hydrophyllaceae). Madroño 28: 121–132.

    Google Scholar 

  • Hansen, D.R., Spicer, G.S., Patterson, R. 2009. Phylogenetic relationships between and within Phacelia sections Whitlavia and Gymnobythus (Boraginaceae). Syst. Bot. 34: 737–746.

    Article  Google Scholar 

  • Heckard, L.R. 1956. The subspecies of Phacelia nemoralis Greene. Leafl. W. Bot. 8: 29–32.

    Google Scholar 

  • Heckard, L.R. 1960. Taxonomic studies in the Phacelia magellanica polyploid complex. Univ. Calif. Publ. Bot. 32: 1–126.

    Google Scholar 

  • Hilger, H.H. 1987. Flower and fruit development in Wigandia caracasana (Hydrophyllaceae). Am. J. Bot. 74: 250–259.

    Article  Google Scholar 

  • Hitchcock, C.L. 1933a. A taxonomic study of the genus Nama I. Am. J. Bot. 20: 415–430.

    Article  Google Scholar 

  • Hitchcock, C.L. 1933b. A taxonomic study of the genus Nama II. Am. J. Bot. 20: 518–534.

    Article  Google Scholar 

  • Hitchcock, C.L. 1939. The perennial Mexican namas. Am. J. Bot. 26: 341–347.

    Article  Google Scholar 

  • Hofmann, M. 1999. Flower and fruit development in the genus Phacelia (Phacelieae, Hydrophyllaceae): Characters of systematic value. Syst. Geogr. Plants 68: 203–212.

    Article  Google Scholar 

  • Horner, P.F. 1977. Biosystematics of the Phacelia distans – P. tanacetifolia complex. Ph.D. Dissertation, Botany, University of California Riverside, Riverside, CA.

    Google Scholar 

  • Horner, P., Scora, R.W. 1983. Leaf hydrocarbons of Phacelia species (Hydrophyllaceae). Phytochemistry 22: 2489–2491.

    Article  CAS  Google Scholar 

  • Horner-Till, S. 1982. Experimental insights on factors effecting the distribution of Phacelia cookei Constance & Heckard, a narrow endemic. M.S. Thesis, Biology, Utah State University.

    Google Scholar 

  • Johnson, N.D. 1983. Flavonoid aglycones from Eriodictyon californicum resin and their implications for herbivory and UV screening. Biochem. Syst. Ecol. 11: 211–215.

    Article  CAS  Google Scholar 

  • Johnson, N.D., Brain, S.A., Ehrlich, P.R. 1985. The role of leaf resin in the interaction between Eriodictyon californicum (Hydrophyllaceae) and its herbivore, Trirhabda diducta (Chrysomelidae). Oecologia 66: 106–110.

    Article  Google Scholar 

  • Klocke, J.A., Vanwagenen, B., Balandrin, M.F. 1986. Biologically active constituents of North American plants. 2. The ellagitannin geraniin and its hydrolysis products as insect growth inhibitors from semiarid land plants. Phytochemistry 25: 85–91.

    Article  CAS  Google Scholar 

  • Kruckeberg, A.R. 1956. Notes on the Phacelia magellanica complex in the Pacific Northwest. Madroño 13: 209–221.

    Google Scholar 

  • Levy, F. 1988. Effects of pollen source and time of pollination on seed production and seed weight in Phacelia dubia and P. maculata (Hydrophyllaceae). Am. Midl. Nat. 119: 193–198.

    Article  Google Scholar 

  • Ley, J.P., Krammer, G., Reinders, G., Gatfield, I.L., Bertram, H.J. 2005. Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H.&A.) Torr., Hydrophyllaceae). J. Agric. Food Chem. 53: 6061–6066.

    Article  CAS  PubMed  Google Scholar 

  • Mayrose, I., Zhan, S.H., Rothfels, C.J., Magnuson-Ford, K., Barker, M.S., Rieseberg, L.H., Otto, S.P. 2011. Recently formed polyploid plants diversify at lower rates. Science 333(6047): 1257.

    Article  CAS  PubMed  Google Scholar 

  • McCall, A.C. 2006. Natural and artificial floral damage induces resistance in Nemophila menziesii (Hydrophyllaceae) flowers. Oikos 112: 660–666.

    Article  Google Scholar 

  • Moldenke, A.R. 1976. California pollination ecology and vegetation types. Phytologia 34: 304–361.

    Google Scholar 

  • Morgan, M.D. 1971: Life history and energy relationships of Hydrophyllum appendiculatum. Ecol. Monogr. 41: 329–349.

    Article  Google Scholar 

  • Mori, M., Kondo, T., Toki, K., Yoshida, K. 2006. Structure of anthocyanin from the blue petals of Phacelia campanularia and its blue flower color development. Phytochemistry 67: 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Munz, P.A. 1932. Dermatitis produced by Phacelia (Hydrophyllaceae). Science 76(1965): 194.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, D.D. 1982. On the status of Euphydryas editha baroni with a range extension of E. editha luesterae. J. Res. Lepidoptera 21: 194–198.

    Google Scholar 

  • O’Neill, K.M. 2001. Solitary Wasps: Behaviour and Natural History. Ithaca, London: Comstock Publishing Associates. 406 pp.

    Google Scholar 

  • Pemberton, R.W., Irving, D.W. 1990. Elaiosomes on weed seeds and the potential for myrmecochory in naturalized plants. Weed Sci. 38: 615–619.

    Google Scholar 

  • Powell, J.A. 1973. A Systematic Monograph of New World Ethmiid Moths (Lepidoptera: Gelechioidea). Washington DC: Smithsonian Institution Press. 302 pp.

    Google Scholar 

  • Quick, C.R. 1947. Germination of Phacelia seeds. Madroño 9: 17–20.

    Google Scholar 

  • Quinn, R.D., Keeley, S.C. 2006. Introduction to California Chaparral. Berkeley, CA: University of California Press, 304 pp.

    Google Scholar 

  • Reynolds, G., Rodriguez, E. 1979. Geranylhydroquinone: A contact allergen from trichomes of Phacelia crenulata. Phytochemistry 18: 1567–1568.

    Article  CAS  Google Scholar 

  • Reynolds, G., Rodriguez, E. 1981a. Prenylated hydroquinones: contact allergens from trichomes of Phacelia minor and P. parryi. Phytochemistry 20: 1365–1366.

    Article  CAS  Google Scholar 

  • Reynolds, G., Rodriguez, E. 1981b. Prenylated phenols that cause contact dermatitis from trichomes of Phacelia ixodes. Planta Med. 43: 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, G., Rodriguez, E. 1986. Dermatotoxic phenolics from glandular trichomes of Phacelia campanularia and P. pedicellata. Phytochemistry 25: 1617–1619.

    Article  CAS  Google Scholar 

  • Reynolds, G., Epstein, W., Terry, D., Rodriguez, E. 1980. A potent contact allergen of Phacelia (Hydrophyllaceae). Contact Dermatitis 6: 272–274.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, G.W., Proksch, P., Rodriguez, E. 1985. Prenylated phenolics that cause contact dermatitis from glandular trichomes of Turricula parryi. Planta Med. 51: 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, G.W., Epstein, W., Rodriguez, E. 1986. Unusual contact allergens from plants in the family Hydrophyllaceae. Contact Dermatitis 14: 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, G.W., Gafner, F., Rodriguez, E. 1989. Contact allergens of an urban shrub Wigandia caracasana. Contact Dermatitis 21: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Rittenhouse, B. 1993. Observation on the pollination of silvery phacelia. Bull. Native Plant Soc. Oregon 26: 10.

    Google Scholar 

  • Rodriguez, E. 1983. Cytotoxic and insecticidal chemicals of desert plants. ACS Symp. Ser. 208: 291–302.

    Article  CAS  Google Scholar 

  • Rodriguez, E. 1985. Insect feeding deterrents from semiarid and arid land plants. ACS Symp. Ser. 276: 447–453.

    Article  CAS  Google Scholar 

  • Safford, H.D, Viers, J.H., Harrison, S.P. 2005. Serpentine endemism in the California flora: a database of serpentine affinity. Madroño 52: 222–257.

    Article  Google Scholar 

  • Sampson, A.W. Jespersen, B.S. 1963. California range brushlands and browse plants. Berkeley, CA: University of California, Division of Agricultural Sciences, California Agricultural Experiment Station, Extension Service, 162 pp.

    Google Scholar 

  • Schultz, A.M., Biswell, H.H. 1952. Competition between grasses reseeded on burned bushlands in California. J. Range Manage. 5: 338–345.

    Article  Google Scholar 

  • Schwarzer, C. 2007. Systematische Untersuchungen an den peruanischen Vertretern der Gattungen Pectocarya DC. ex Meisn., Amsinckia Lehm., Plagiobothrys Fisch. & C.A. Mey. und Cryptantha Lehm. ex G. Don (Boraginaceae). Diploma Thesis, Systematic Botany, FU Berlin.

    Google Scholar 

  • Serrato-Valenti, G., Cornara, L., Modenesi, P., Piana, M., Mariotti, M.G. 2000. Structure and histochemistry of embryo envelope tissues in the mature dry seed and early germination of Phacelia tanacetifolia. Ann. Bot. 85: 625–634.

    Article  Google Scholar 

  • Sewell, M., Vincent, M.A. 2009. Biosystematics of the Phacelia ranunculacea complex (Hydrophyllaceae). Castanea 71: 192–209.

    Article  Google Scholar 

  • Shelly, J.S. 1989. Biosystematic studies of Phacelia capitata (Hydrophyllaceae), a species endemic to serpentine soils in southwestern Oregon. Madroño 36: 232–247.

    Google Scholar 

  • Svensson, H.G. 1925. Zur Embryologie der Hydrophyllaceen, Borraginaceen und Heliotropiaceen mit besonderer Rücksicht auf die Endospermbildung. Uppsala Univ. Årsskr. 2: 1–176.

    Google Scholar 

  • Taylor, S.I., Levy, F. 2002. Responses to soils and a test for preadaptation to serpentine in Phacelia dubia (Hydrophyllaceae). New Phytol. 155: 437–447.

    Article  Google Scholar 

  • Thorp, R.W., Horning, D.S., Dunning, L.L. 1983. Bumble bees and cuckoo bumble bees of California (Hymenoptera, Apidae). Berkeley, CA: University of California Press, 79 pp.

    Google Scholar 

  • Walden, G.K. 2010. Phylogeny of infrageneric relationships within Phacelia (Boraginaceae) inferred from chloroplast sequence data. M.S. Thesis, Biology, San Francisco State University, San Francisco.

    Google Scholar 

  • Walden, G.K., Patterson, R. 2010. Howellanthus dalesianus, recognition of a new genus and species in tribe Phacelieae (Boraginaceae). Madroño 57: 268–273.

    Article  Google Scholar 

  • Weigend, M., Hilger, H.H. 2010. Codonaceae – a newly required family name in Boraginales. Phytotaxa 10: 26–30.

    Article  Google Scholar 

  • Weigend, M., Luebert, F., Gottschling, M., Couvreur, T.L.P., Hilger, H.H., Miller, J. 2014. From capsules to nutlets—phylogenetic relationships in the Boraginales. Cladistics 30: 508–518.

    Article  Google Scholar 

  • Wicklow, D.T. 1977. Germination response in Emmenanthe penduliflora (Hydrophyllaceae). Ecology 58: 201–205.

    Article  Google Scholar 

  • Wolfe, L.M., Shore, J.S. 1992. The mating system of Hydrophyllum appendiculatum, a protandrous species. Sex. Plant Reprod. 5: 239–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Walden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hofmann, M., Walden, G.K., Hilger, H.H., Weigend, M. (2016). Hydrophyllaceae. In: Kadereit, J., Bittrich, V. (eds) Flowering Plants. Eudicots. The Families and Genera of Vascular Plants, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-28534-4_20

Download citation

Publish with us

Policies and ethics