Skip to main content

Low-Rank Kernel Space Representations in Prototype Learning

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 428))

Abstract

In supervised learning feature vectors are often implicitly mapped to a high-dimensional space using the kernel trick with quadratic costs for the learning algorithm. The recently proposed random Fourier features provide an explicit mapping such that classical algorithms with often linear complexity can be applied. Yet, the random Fourier feature approach remains widely complex techniques which are difficult to interpret. Using Matrix Relevance Learning the linear mapping of the data for a better class separation can be learned by adapting a parametric Euclidean distance. Further, a low-rank representation of the input data can be obtained. We apply this technique to random Fourier feature encoded data to obtain a discriminative mapping of the kernel space. This explicit approach is compared with a differentiable kernel vector quantizer on the same but implicit kernel representation. Using multiple benchmark problems, we demonstrate that a parametric distance on a RBF encoding yields to better classification results and permits access to interpretable prediction models with visualization abilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The random Fourier features are generated such that the respective RBF kernel is approximated.

  2. 2.

    Note that all vectors in DK-GMLVQ still live in the same D-dimensional space.

  3. 3.

    Often the RBF encoding is considered as a silver bullet, but if it fails a controlled inspection framework can be very useful.

References

  1. A.Rahimi, Recht, B.: Random features for large-scale kernel machines. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in neural information processing systems 20. In: Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems. Curran Associates, Inc. (2007). http://books.nips.cc/papers/files/nips20/NIPS2007_0833.pdf

  2. Arlt, W., Biehl, M., Taylor, A.: Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96, 3775–3784 (2011)

    Article  Google Scholar 

  3. Biehl, M., Bunte, K., Schleif, F.M., Schneider, P., Villmann, T.: Large margin linear discriminative visualization by matrix relevance learning. In: Proceedings of IJCNN 2012, 1873–1880 (2012)

    Google Scholar 

  4. Biehl, M., Hammer, B., Schleif, F.M., Schneider, P., Villmann, T.: Stationarity of matrix relevance LVQ. In: Proceedings of IJCNN 2015. p. to appear (2015)

    Google Scholar 

  5. Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.): Similarity based clustering - recent developments and biomedical applications. In: Lecture Notes in Artificial Intelligence, vol. 5400. Springer (2009)

    Google Scholar 

  6. Bojer, T., Hammer, B., Schunk, D., von Toschanowitz, K.T.: Relevance determination in Learning Vector Quantization. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, pp. 271–276 (2001)

    Google Scholar 

  7. Bunte, K., Schleif, F.M., Biehl, M.: Adaptive learning for complex-valued data. Proceedings of ESANN 2012, 387–392 (2012)

    Google Scholar 

  8. Bunte, K., Schneider, P., Hammer, B., Schleif, F.M., Villmann, T., Biehl, M.: Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Netw. 26, 159–173 (2012)

    Article  Google Scholar 

  9. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  10. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Advances in Neural Information Processing Systems, vol. 15, pp. 462–469. MIT Press, Cambridge, MA (2003)

    Google Scholar 

  11. Gisbrecht, A., Hammer, B., Mokbel, B., Sczyrba, A.: Nonlinear dimensionality reduction for cluster identification in metagenomic samples. In: IV, pp. 174–179 (2013)

    Google Scholar 

  12. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw. 15(8–9), 1059–1068 (2002)

    Article  Google Scholar 

  13. Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning—review of recent developments in learning vector quantization. Found. Comput. Decision Sci. 39, 79–105 (2014)

    MathSciNet  Google Scholar 

  14. Kästner, M., Nebel, D., Riedel, M., Biehl, M., Villmann, T.: Differentiable kernels in generalized matrix learning vector quantization. In: 11th International Conference on Machine Learning and Applications, ICMLA, pp. 132–137. IEEE (2012). http://dx.doi.org/10.1109/ICMLA.2012.231

  15. Kohonen, T.: Learning Vector Quantization for pattern recognition. Technical report TKK-F-A601, Helsinki Univeristy of Technology, Espoo, Finland (1986)

    Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps. Springer, Berlin, Heidelberg (1997)

    Book  MATH  Google Scholar 

  17. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Berlin (2007)

    Google Scholar 

  18. van der Maaten, L.J.P., Hinton, G.: Visualizing High-Dimensional Data Using t-SNE (2008)

    Google Scholar 

  19. Mendenhall, M.J., Merényi, E.: Relevance-based feature extraction for hyperspectral images. IEEE Transactions on Neural Networks. 19(4), 658–672 (2008)

    Google Scholar 

  20. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 6, 2651–2667 (2006). http://www.jmlr.org/papers/v7/micchelli06a.html

  21. Mylavarapu, S., Kaban, A.: Random projections versus random selection of features for classification of high dimensional data. In: UKCI, pp. 305–312. IEEE (2013)

    Google Scholar 

  22. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. http://archive.ics.uci.edu/ml/ (1998)

  23. Oja, E.: Neural networks, principal components, and subspaces. J. Neural Syst. 1, 61–68 (1989)

    Article  MathSciNet  Google Scholar 

  24. Pöllä, M., Honkela, T., Kohonen, T.: Bibliography of self-organizing map (som) papers: 2002–2005 addendum. TKK Reports in Information and Computer Science, Helsinki University of Technology Report TKK-ICS-R23 (2009)

    Google Scholar 

  25. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8. Proceedings of the 1995 Conference, pp. 423–429. MIT Press, Cambridge, MA, USA (1996)

    Google Scholar 

  26. Schleif, F.M., Villmann, T., Hammer, B.: Prototype based fuzzy classification in clinical proteomics. Int. J. Approx. Reasoning 47(1), 4–16 (2008)

    Google Scholar 

  27. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schneider, P., Schleif, F.M., Villmann, T., Biehl, M.: Generalized matrix learning vector quantizer for the analysis of spectral data. In: Verleysen, M. (ed.) European Symposium on Artifiacal Neural Networks. Bruges, Belgium, Apr 2008

    Google Scholar 

  29. Schölkopf, B.: The kernel trick for distances. In: Advances in Neural Information Processing Systems, vol. 13, Papers from Neural Information Processing Systems (NIPS), pp. 301–307 (2000)

    Google Scholar 

  30. Strickert, M., Witzel, K., Mock, H.P., Schleif, F.M., Villmann, T.: Supervised attribute relevance determination for protein identification in stress experiments. In: Proceedings of Machine Learning in Systems Biology (2007)

    Google Scholar 

  31. Villmann, T., Haase, S., Kaden, M.: Kernelized vector quantization in gradient-descent learning. Neurocomputing 147, 83–95 (2015). http://dx.doi.org/10.1016/j.neucom.2013.11.048

    Google Scholar 

  32. Villmann, T., Schleif, F.M., Hammer, B.: Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Netw. 19, 610–622 (2006)

    Article  MATH  Google Scholar 

  33. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 1473–1480. MIT Press, Cambridge, MA (2006)

    Google Scholar 

  34. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) NIPS, pp. 668–674. MIT Press (2000)

    Google Scholar 

Download references

Acknowledgments

Marie Curie Intra-European Fellowship (IEF): FP7-PEOPLE-2012-IEF (FP7-327791-ProMoS) is greatly acknowledged. This work has been partially funded by the Belgian FRS-FNRS project 7.0175.13 DRedVis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Schleif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bunte, K., Kaden, M., Schleif, FM. (2016). Low-Rank Kernel Space Representations in Prototype Learning. In: Merényi, E., Mendenhall, M., O'Driscoll, P. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-28518-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28518-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28517-7

  • Online ISBN: 978-3-319-28518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics