Pathology of Bronchopulmonary Dysplasia

  • Monique E. De PaepeEmail author
Part of the Respiratory Medicine book series (RM)


The pulmonary pathology of preterm infants has changed significantly over the past five decades, synchronously with modifications in perinatal and neonatal management. During the pre-surfactant era, mechanical ventilation of preterm infants was associated with a severe fibroproliferative and inflammatory pulmonary response. The resulting lung disease, now known as “classical” bronchopulmonary dysplasia (BPD), was characterized by variable interstitial fibrosis, alternating areas of atelectasis and overexpansion, and severe bronchovascular lesions. Major advances in clinical care, including the use of exogenous surfactant, antenatal glucocorticoids, and improved ventilation techniques, have resulted in survival at lower gestational ages and a significant modification of the BPD phenotype. Lungs of infants with “new” BPD (i.e., surfactant-treated, very preterm infants, usually <1000 g birth weight) show minimal airway lesions and interstitial fibrosis. Instead, “new” BPD is characterized by diffuse enlargement and simplification of the airspaces, associated with dysmorphic pulmonary microvascular growth. This chapter reviews the structural stages of lung development, the histopathologic patterns of preterm lung disease over the past half century, and the pulmonary pathology of long-term, adult BPD survivors.


Wilson–Mikity Chronic lung disease Prematurity Hyaline membrane disease Surfactant 


  1. 1.
    Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7): 357–68.CrossRefPubMedGoogle Scholar
  2. 2.
    Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. I: The term mouse models. Am J Physiol Lung Cell Mol Physiol. 2014. doi:10.1152/ajplung.00159.2014. Epub 2014/10/12.Google Scholar
  4. 4.
    D’Angio CT, Ryan RM. Animal models of bronchopulmonary dysplasia. Iii: The preterm and term rabbit models. Am J Physiol Lung Cell Mol Physiol. 2014. doi:10.1152/ajplung.00228.2014. Epub 2014/10/19.Google Scholar
  5. 5.
    O’Reilly M, Thebaud B. Animal models of bronchopulmonary dysplasia. II: The term rat models. Am J Physiol Lung Cell Mol Physiol. 2014. doi:10.1152/ajplung.00160.2014. Epub 2014/10/12.Google Scholar
  6. 6.
    Yoder BA, Coalson JJ. Animal models of bronchopulmonary dysplasia. V: The preterm baboon models. Am J Physiol Lung Cell Mol Physiol. 2014. doi:10.1152/ajplung.00171.2014. Epub 2014/10/05.Google Scholar
  7. 7.
    Burri PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald JA, editor. Lung growth and development. New York: Marcel Dekker; 1997. p. 1–36.Google Scholar
  8. 8.
    De Paepe ME. Lung growth and development. In: Churg AM, Myers JL, Tazelaar HD, Wright JL, editors. Thurlbeck’s pathology of the lung. 3rd ed. New York: Thieme Medical; 2005.Google Scholar
  9. 9.
    Hislop A, Reid L. Intra-pulmonary arterial development during fetal life-branching pattern and structure. J Anat. 1972;113(1):35–48.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hall SM, Hislop AA, Pierce CM, Haworth SG. Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol. 2000;23(2): 194–203.CrossRefPubMedGoogle Scholar
  11. 11.
    Hislop A, Reid L. Fetal and childhood development of the intrapulmonary veins in man—branching pattern and structure. Thorax. 1973;28(3):313–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hall SM, Hislop AA, Haworth SG. Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol. 2002;26(3):333–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Bucher U, Reid LM. Development of intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax. 1961;16:207–18.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Boyden EA. The programming of canalization in fetal lungs of man and monkey. Am J Anat. 1976;145(1):125–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Langston C, Kida K, Reed M, Thurlbeck WM. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis. 1984;129(4):607–13.PubMedGoogle Scholar
  16. 16.
    Zeltner TB, Burri PH. The postnatal development and growth of the human lung. II Morphology. Respir Physiol. 1987;67(3):269–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Davies G, Reid L. Growth of the alveoli and pulmonary arteries in childhood. Thorax. 1970;25(6):669–81.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Philip AG. Chronic lung disease of prematurity: a short history. Semin Fetal Neonatal Med. 2009;14(6):333–8. Epub 2009/08/25.CrossRefPubMedGoogle Scholar
  19. 19.
    Wilson MG, Mikity VG. A new form of respiratory disease in premature infants. AMA J Dis Child. 1960;99:489–99. Epub 1960/04/01.PubMedGoogle Scholar
  20. 20.
    Hodgman JE, Mikity VG, Tatter D, Cleland RS. Chronic respiratory distress in the premature infant. Wilson-Mikity syndrome. Pediatrics. 1969;44(2):179–95. Epub 1969/08/01.PubMedGoogle Scholar
  21. 21.
    Hawker JM, Reynolds EO, Taghizadeh A. Pulmonary surface tension and pathological changes in infants dying after respirator treatment for severe hyaline membrane disease. Lancet. 1967;2(7506):75–7. Epub 1967/07/08.CrossRefPubMedGoogle Scholar
  22. 22.
    Bonikos DS, Bensch KG, Northway Jr WH, Edwards DK. Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol. 1976;7(6):643–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Anderson WR, Engel RR. Cardiopulmonary sequelae of reparative stages of bronchopulmonary dysplasia. Arch Pathol Lab Med. 1983;107(11):603–8. Epub 1983/11/01.PubMedGoogle Scholar
  24. 24.
    Stocker JT. Pathologic features of long-standing “healed” bronchopulmonary dysplasia: a study of 28 3- to 40-month-old infants. Hum Pathol. 1986;17(9):943–61. Epub 1986/09/01.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee RM, O'Brodovich H. Airway epithelial damage in premature infants with respiratory failure. Am Rev Respir Dis. 1988;137(2):450–7. Epub 1988/02/01.CrossRefPubMedGoogle Scholar
  26. 26.
    Margraf LR, Tomashefski Jr JF, Bruce MC, Dahms BB. Morphometric analysis of the lung in bronchopulmonary dysplasia. Am Rev Respir Dis. 1991;143(2):391–400.CrossRefPubMedGoogle Scholar
  27. 27.
    Takemura T, Akamatsu H. Ultrastructural study on the pulmonary parenchyma of the neonates following prolonged mechanical ventilation. Acta Pathol Jpn. 1987;37(7):1115–26. Epub 1987/07/01.PubMedGoogle Scholar
  28. 28.
    Hislop AA, Wigglesworth JS, Desai R, Aber V. The effects of preterm delivery and mechanical ventilation on human lung growth. Early Hum Dev. 1987;15(3):147–64. Epub 1987/05/01.CrossRefPubMedGoogle Scholar
  29. 29.
    Sobonya RE, Logvinoff MM, Taussig LM, Theriault A. Morphometric analysis of the lung in prolonged bronchopulmonary dysplasia. Pediatr Res. 1982;16(11):969–72. Epub 1982/11/01.CrossRefPubMedGoogle Scholar
  30. 30.
    Bush A, Busst CM, Knight WB, Hislop AA, Haworth SG, Shinebourne EA. Changes in pulmonary circulation in severe bronchopulmonary dysplasia. Arch Dis Child. 1990;65(7):739–45. Epub 1990/07/01.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Reid L. Bronchopulmonary dysplasia—pathology. J Pediatr. 1979;95(5 Pt 2):836–41. Epub 1979/11/01.CrossRefPubMedGoogle Scholar
  32. 32.
    Tomashefski Jr JF, Oppermann HC, Vawter GF, Reid LM. Bronchopulmonary dysplasia: a morphometric study with emphasis on the pulmonary vasculature. Pediatr Pathol. 1984;2(4):469–87.CrossRefPubMedGoogle Scholar
  33. 33.
    Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1(8159):55–9. Epub 1980/01/12.CrossRefPubMedGoogle Scholar
  34. 34.
    Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol. 2003;8(1):73–81. Epub 2003/04/02.CrossRefPubMedGoogle Scholar
  36. 36.
    Kurland G, Deterding RR, Hagood JS, Young LR, Brody AS, Castile RG, et al. An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med. 2013;188(3):376–94. Epub 2013/08/03.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L600–7.PubMedGoogle Scholar
  38. 38.
    Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L555–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, et al. VEGF is required for growth and survival in neonatal mice. Development. 1999;126(6):1149–59.PubMedGoogle Scholar
  40. 40.
    Galambos C, Ng YS, Ali A, Noguchi A, Lovejoy S, D’Amore PA, et al. Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol. 2002;27(2):194–203.CrossRefPubMedGoogle Scholar
  41. 41.
    Thebaud B. Angiogenesis in lung development, injury and repair: implications for chronic lung disease of prematurity. Neonatology. 2007;91(4):291–7. Epub 2007/06/19.CrossRefPubMedGoogle Scholar
  42. 42.
    Abman SH. Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1755–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.CrossRefPubMedGoogle Scholar
  45. 45.
    De Paepe ME, Mao Q, Powell J, Rubin SE, DeKoninck P, Appel N, et al. Growth of pulmonary microvasculature in ventilated preterm infants. Am J Respir Crit Care Med. 2006;173(2): 204–11.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Thibeault DW, Mabry SM, Norberg M, Truog WE, Ekekezie II. Lung microvascular adaptation in infants with chronic lung disease. Biol Neonate. 2004;85(4):273–82. Epub 2004/01/24.CrossRefPubMedGoogle Scholar
  47. 47.
    Thibeault DW, Truog WE, Ekekezie II. Acinar arterial changes with chronic lung disease of prematurity in the surfactant era. Pediatr Pulmonol. 2003;36(6):482–9. Epub 2003/11/18.CrossRefPubMedGoogle Scholar
  48. 48.
    Sward-Comunelli SL, Mabry SM, Truog WE, Thibeault DW. Airway muscle in preterm infants: changes during development. J Pediatr. 1997;130(4):570–6. Epub 1997/04/01.CrossRefPubMedGoogle Scholar
  49. 49.
    Tiddens HA, Hofhuis W, Casotti V, Hop WC, Hulsmann AR, de Jongste JC. Airway dimensions in bronchopulmonary dysplasia: implications for airflow obstruction. Pediatr Pulmonol. 2008;43(12):1206–13. Epub 2008/11/11.CrossRefPubMedGoogle Scholar
  50. 50.
    McNellis EM, Mabry SM, Taboada E. Ekekezie. II Altered pulmonary lymphatic development in infants with chronic lung disease. BioMed Res Int. 2014;2014:109891. Epub 2014/02/15.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ghelfi E, Karaaslan C, Berkelhamer S, Akar S, Kozakewich H, Cataltepe S. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2011;45(3):550–6. Epub 2010/12/24.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Galambos C, Sims-Lucas S, Abman SH. Histologic evidence of intrapulmonary anastomoses by three-dimensional reconstruction in severe bronchopulmonary dysplasia. Ann Am Thorac Soc. 2013;10(5):474–81. Epub 2013/08/31.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cutz E, Yeger H, Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr Dev Pathol. 2007;10(6):419–35. Epub 2007/11/16.CrossRefPubMedGoogle Scholar
  54. 54.
    Johnson DE, Anderson WR, Burke BA. Pulmonary neuroendocrine cells in pediatric lung disease: alterations in airway structure in infants with bronchopulmonary dysplasia. Anat Rec. 1993;236(1):115–9. 72–3; discussion 20–1. Epub 1993/05/01.CrossRefPubMedGoogle Scholar
  55. 55.
    Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181(10):1093–7. Epub 2010/02/06.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Welsh L, Kirkby J, Lum S, Odendaal D, Marlow N, Derrick G, et al. The EPICure study: maximal exercise and physical activity in school children born extremely preterm. Thorax. 2010;65(2):165–72. Epub 2009/12/10.CrossRefPubMedGoogle Scholar
  57. 57.
    Fakhoury KF, Sellers C, Smith EO, Rama JA, Fan LL. Serial measurements of lung function in a cohort of young children with bronchopulmonary dysplasia. Pediatrics. 2010;125(6):e1441–7. Epub 2010/05/05.CrossRefPubMedGoogle Scholar
  58. 58.
    Cutz E, Chiasson D. Chronic lung disease after premature birth. N Engl J Med. 2008;358(7):743–5. author reply 5–6. Epub 2008/02/15.CrossRefPubMedGoogle Scholar
  59. 59.
    Narayanan M, Beardsmore CS, Owers-Bradley J, Dogaru CM, Mada M, Ball I, et al. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am J Respir Crit Care Med. 2013;187(10):1104–9. Epub 2013/03/16.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45. Epub 2010/04/10.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760–6. Epub 2013/04/23.CrossRefPubMedGoogle Scholar
  62. 62.
    Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76. Epub 2013/06/12.CrossRefPubMedGoogle Scholar
  63. 63.
    Erickson AM, de la Monte SM, Moore GW, Hutchins GM. The progression of morphologic changes in bronchopulmonary dysplasia. Am J Pathol. 1987;127(3):474–84.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PathologyWomen and Infants Hospital of Rhode IslandProvidenceUSA

Personalised recommendations