Genetics of Bronchopulmonary Dysplasia

  • Pascal M. LavoieEmail author
Part of the Respiratory Medicine book series (RM)


Bronchopulmonary dysplasia (BPD) is a complex multifactorial disease that results from a combination of clinical factors, including lung immaturity, mechanical ventilation, oxidative stress, and pulmonary congestion due to increased cardiac blood shunting, nutritional factors, and inflammation. Twin studies have indicated that susceptibility to BPD is strongly inherited. Many studies have reported association between common genetic variants and BPD in preterm infants. Recent genomic studies have highlighted a potential role for molecular pathways involved in inflammation and lung development in affected infants. Rare mutations in genes encoding the lipid transporter ATP-binding cassette subfamily A member 3 (ABCA3 gene) which is involved in surfactant synthesis in alveolar type II cells, as well as surfactant protein B (SFTPB) and C (SFTPC) can also dramatically affect the course of neonatal lung diseases. This chapter summarizes the current state of knowledge on the genetics of BPD.


Bronchopulmonary dysplasia Genetics Infant Premature Gene expression Surfactant proteins ATP-binding cassette Subfamily A Member 3 



I am thankful to Mikko Hallmann and Vineet Bhandari for critical comments on this manuscript.


  1. 1.
    Kinsella JP, Greenough A, Abman SH. Bronchopulmonary dysplasia. Lancet. 2006;367(9520):1421–31. PubMed.PubMedCrossRefGoogle Scholar
  2. 2.
    El Mazloum D, Moschino L, Bozzetto S, Baraldi E. Chronic lung disease of prematurity: long-term respiratory outcome. Neonatology. 2014;105(4):352–6. PubMed Epub 2014/06/17. eng.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):189–201. PubMed Epub 2014/03/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–68. PubMed.PubMedCrossRefGoogle Scholar
  5. 5.
    Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2010;23(2):167–72. PubMed Epub 2010/12/21. eng.CrossRefGoogle Scholar
  6. 6.
    Hadchouel A, Franco-Montoya ML, Delacourt C. Altered lung development in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):158–67. PubMed Epub 2014/03/19. eng.PubMedCrossRefGoogle Scholar
  7. 7.
    Nickerson BG, Taussig LM. Family history of asthma in infants with bronchopulmonary dysplasia. Pediatrics. 1980;65(6):1140–4. PubMed.PubMedGoogle Scholar
  8. 8.
    Parker RA, Lindstrom DP, Cotton RB. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia. Semin Perinatol. 1996;20(3):206–9. PubMed.PubMedCrossRefGoogle Scholar
  9. 9.
    Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H, et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics. 2006;117(6):1901–6. PubMed.PubMedCrossRefGoogle Scholar
  10. 10.
    Lavoie PM, Pham C, Jang KL. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics. 2008;122(3):479–85. PubMed.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Walsh MC, Szefler S, Davis J, Allen M, Van Marter L, Abman S, et al. Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics. 2006;117(3 Pt 2):S52–6. PubMed.PubMedGoogle Scholar
  12. 12.
    Wain LV, Armour JA, Tobin MD. Genomic copy number variation, human health, and disease. Lancet. 2009;374(9686):340–50. PubMed.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffmann TJ, Shaw GM, Stevenson DK, Wang H, Quaintance CC, Oehlert J, et al. Copy number variation in bronchopulmonary dysplasia. Am J Med Genet A. 2014;164A(10):2672–5. PubMed Central PMCID: 4167221.PubMedCrossRefGoogle Scholar
  14. 14.
    International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8. PubMed Central PMCID: 3173859.CrossRefGoogle Scholar
  15. 15.
    Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406. PubMed Epub 2009/09/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15(11):722–33. PubMed Epub 2014/09/10. eng.PubMedCrossRefGoogle Scholar
  17. 17.
    Stranger BE, Raj T. Genetics of human gene expression. Curr Opin Genet Dev. 2013;23(6):627–34. PubMed.PubMedCrossRefGoogle Scholar
  18. 18.
    Atias N, Istrail S, Sharan R. Pathway-based analysis of genomic variation data. Curr Opin Genet Dev. 2013;23(6):622–6. PubMed.PubMedCrossRefGoogle Scholar
  19. 19.
    Patnala R, Clements J, Batra J. Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet. 2013;14:39. PubMed Central PMCID: 3655892.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shaw GM, O’Brodovich HM. Progress in understanding the genetics of bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):85–93. PubMed Central PMCID: 3628629.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hallman M, Marttila R, Pertile R, Ojaniemi M, Haataja R. Genes and environment in common neonatal lung disease. Neonatology. 2007;91(4):298–302. PubMed.PubMedCrossRefGoogle Scholar
  22. 22.
    Lavoie PM, Dubé MP. Genetics of bronchopulmonary dysplasia in the age of genomics. Curr Opin Pediatr. 2010;22(2):134–8. PubMed.PubMedCrossRefGoogle Scholar
  23. 23.
    Prosnitz A, Gruen JR, Bhandari V. The genetics of disorders affecting the premature newborn. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR, editors. Emery and Rimoin’s principles and pactice of medical genetics. 6th ed. Philadelphia: Elsevier; 2013. p. 1–22.CrossRefGoogle Scholar
  24. 24.
    Hadchouel A, Durrmeyer X, Bouzigon E, Incitti R, Huusko J, Jarreau PH, et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2011;184(10):1164–70. PubMed.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruegger C, Hegglin M, Adams M, Bucher HU, Swiss Neonatal Network. Population based trends in mortality, morbidity and treatment for very preterm- and very low birth weight infants over 12 years. BMC Pediatr. 2012;12:17. PubMed Central PMCID: 3311070.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES. Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ. 2012;345:e7976. PubMed Central PMCID: 3514472.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gortner L, Misselwitz B, Milligan D, Zeitlin J, Kollee L, Boerch K, et al. Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: results from the MOSAIC cohort. Neonatology. 2011;99(2):112–7. PubMed.PubMedCrossRefGoogle Scholar
  28. 28.
    Lundqvist P, Kallen K, Hallstrom I, Westas LH. Trends in outcomes for very preterm infants in the southern region of Sweden over a 10-year period. Acta Paediatr. 2009;98(4):648–53. PubMed.PubMedCrossRefGoogle Scholar
  29. 29.
    Mahlman M, Huusko JM, Karjalainen MK, Kaukola T, Marttila R, Ojaniemi M, et al. Genes encoding vascular endothelial growth factor A (VEGFA) and VEGF receptor 2 (VEGFR2) and risk for bronchopulmonary dysplasia. Neonatology. 2015;108(1):53–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Huusko JM, Mahlman M, Karjalainen MK, Kaukola T, Haataja R, Marttila R, et al. Polymorphisms of the gene encoding kit ligand are associated with bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50:260–70. (Epub ahead of print). PubMed Epub 2014/03/13. eng.Google Scholar
  31. 31.
    Huusko JM, Karjalainen MK, Mahlman M, Haataja R, Kari MA, Andersson S, et al. A study of genes encoding cytokines (IL6, IL10, TNF), cytokine receptors (IL6R, IL6ST), and glucocorticoid receptor (NR3C1) and susceptibility to bronchopulmonary dysplasia. BMC Med Genet. 2014;15:120. PubMed Epub 2014/11/21. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lavoie PM, Ladd M, Hirschfeld AF, Huusko J, Mahlman M, Speert DP, et al. Influence of common non-synonymous Toll-like receptor 4 polymorphisms on bronchopulmonary dysplasia and prematurity in human infants. PLoS One. 2012;7(2):e31351. PubMed Central PMCID: 3279371.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Floros J, Londono D, Gordon D, Silveyra P, Diangelo SL, Viscardi RM, et al. IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants. Pediatr Res. 2012;71(1):107–14. PubMed Epub 2012/02/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wang H, St Julien KR, Stevenson DK, Hoffmann TJ, Witte JS, Lazzeroni LC, et al. A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics. 2013;132(2):290–7. PubMed Pubmed Central PMCID: 3727675.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sampath V, Garland JS, Helbling D, Dimmock D, Mulrooney NP, Simpson PM, et al. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr Res. 2015;77(3):477–83. PubMed Epub 2014/12/18. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Askenazi DJ, Halloran B, Patil N, Keeling S, Saeidi B, Koralkar R, et al. Genetic polymorphisms of heme-oxygenase 1 (HO-1) may impact on acute kidney injury, bronchopulmonary dysplasia, and mortality in premature infants. Pediatr Res. 2015;77(6):793–8. PubMed Central PMCID: 4439308.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Poggi C, Giusti B, Vestri A, Pasquini E, Abbate R, Dani C. Genetic polymorphisms of antioxidant enzymes in preterm infants. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:131–4. PubMed Epub 2012/09/14. eng.PubMedGoogle Scholar
  38. 38.
    Wang X, Li W, Liu W, Cai B, Cheng T, Gao C, et al. GSTM1 and GSTT1 gene polymorphisms as major risk factors for bronchopulmonary dysplasia in a Chinese Han population. Gene. 2013;533(1):48–51. PubMed Epub 2013/10/15. eng.PubMedCrossRefGoogle Scholar
  39. 39.
    Karagianni P, Rallis D, Fidani L, Porpodi M, Kalinderi K, Tsakalidis C, et al. Glutathion-S-Transferase P1 polymorphisms association with broncopulmonary dysplasia in preterm infants. Hippokratia. 2013;17(4):363–7. PubMed Central PMCID: 4097420.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cho HY, Kleeberger SR. Noblesse oblige: NRF2 functions in the airways. Am J Respir Cell Mol Biol. 2014;50(5):844–7. PubMed Central PMCID: 4068955.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Koroglu OA, Onay H, Cakmak B, Bilgin B, Yalaz M, Tunc S, et al. Association of vitamin D receptor gene polymorphisms and bronchopulmonary dysplasia. Pediatr Res. 2014;76(2):171–6. PubMed Epub 2014/05/07. eng.PubMedCrossRefGoogle Scholar
  42. 42.
    Serce Pehlevan O, Karatekin G, Koksal V, Benzer D, Gursoy T, Yavuz T, et al. Association of vitamin D binding protein polymorphisms with bronchopulmonary dysplasia: a case-control study of gc globulin and bronchopulmonary dysplasia. J Perinatol. 2015;35(9):763–7. PubMed Epub 2015/06/13. eng.Google Scholar
  43. 43.
    Fujioka K, Shibata A, Yokota T, Koda T, Nagasaka M, Yagi M, et al. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns. Sci Rep. 2014;4:4459. PubMed Epub 2014/03/26. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Usuda T, Kobayashi T, Sakakibara S, Kobayashi A, Kaneko T, Wada M, et al. Interleukin-6 polymorphism and bronchopulmonary dysplasia risk in very low-birthweight infants. Pediatr Int. 2012;54(4):471–5. PubMed Epub 2012/03/28. eng.PubMedCrossRefGoogle Scholar
  45. 45.
    Cakmak BC, Calkavur S, Ozkinay F, Koroglu OA, Onay H, Itirli G, et al. Association between bronchopulmonary dysplasia and MBL2 and IL1-RN polymorphisms. Pediatr Int. 2012;54(6):863–8. PubMed Epub 2012/08/14. eng.PubMedCrossRefGoogle Scholar
  46. 46.
    Ozkan H, Koksal N, Cetinkaya M, Kilic S, Celebi S, Oral B, et al. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia. J Perinatol. 2012;32(3):210–7. PubMed Epub 2011/06/18. eng.PubMedCrossRefGoogle Scholar
  47. 47.
    Winters AH, Levan TD, Vogel SN, Chesko KL, Pollin TI, Viscardi RM. Single nucleotide polymorphism in toll-like receptor 6 is associated with a decreased risk for ureaplasma respiratory tract colonization and bronchopulmonary dysplasia in preterm infants. Pediatr Infect Dis J. 2013;32(8):898–904. PubMed Epub 2013/03/23. eng.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Pietrzyk JJ, Kwinta P, Wollen EJ, Bik-Multanowski M, Madetko-Talowska A, Gunther CC, et al. Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development. PLoS One. 2013;8(10):e78585. PubMed Epub 2013/11/07. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cohen J, Van Marter LJ, Sun Y, Allred E, Leviton A, Kohane IS. Perturbation of gene expression of the chromatin remodeling pathway in premature newborns at risk for bronchopulmonary dysplasia. Genome Biol. 2007;8(10):R210. PubMed Epub 2007/10/06. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bhattacharya S, Go D, Krenitsky DL, Huyck HL, Solleti SK, Lunger VA, et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2012;186(4):349–58. PubMed Epub 2012/06/23. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Carrera P, Di Resta C, Volonteri C, Castiglioni E, Bonfiglio S, Lazarevic D, et al. Exome sequencing and pathway analysis for identification of genetic variability relevant for bronchopulmonary dysplasia (BPD) in preterm newborns: a pilot study. Clin Chim Acta. 2015;451:39–45. PubMed Epub 2015/01/13. eng.Google Scholar
  52. 52.
    Somaschini M, Castiglioni E, Volonteri C, Cursi M, Ferrari M, Carrera P. Genetic predisposing factors to bronchopulmonary dysplasia: preliminary data from a multicentre study. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:127–30. PubMed Epub 2012/09/14. eng.PubMedGoogle Scholar
  53. 53.
    Li J, Yu KH, Oehlert J, Jeliffe-Pawlowski LL, Gould JB, Stevenson DK, et al. Exome sequencing of neonatal blood spots identifies genes implicated in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192(5):589–98. PubMed Epub 2015/06/02. eng.Google Scholar
  54. 54.
    Cohen ED, Ihida-Stansbury K, Lu MM, Panettieri RA, Jones PL, Morrisey EE. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J Clin Invest. 2009;119(9):2538–49. PubMed Epub 2009/08/20. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ali S, Hirschfeld AF, Mayer ML, Fortuno 3rd ES, Corbett N, Kaplan M, et al. Functional genetic variation in NFKBIA and susceptibility to childhood asthma, bronchiolitis, and bronchopulmonary dysplasia. J Immunol. 2013;190(8):3949–58. PubMed.PubMedCrossRefGoogle Scholar
  56. 56.
    Ambalavanan N, Cotten CM, Page GP, Carlo WA, Murray JC, Bhattacharya S, et al. Integrated genomic analyses in bronchopulmonary dysplasia. J Pediatr. 2015;166(3):531–7.e13. PubMed Epub 2014/12/03. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wu YT, Chen WJ, Hsieh WS, Tsao PN, Yu SL, Lai CY, et al. MicroRNA expression aberration associated with bronchopulmonary dysplasia in preterm infants: a preliminary study. Respir Care. 2013;58(9):1527–35. PubMed Epub 2013/03/14. eng.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang Y, Qiu J, Kan Q, Zhou XG, Zhou XY. MicroRNA expression profiling studies on bronchopulmonary dysplasia: a systematic review and meta-analysis. Genet Mol Res. 2013;12(4):5195–206. PubMed Epub 2013/12/05. eng.PubMedCrossRefGoogle Scholar
  59. 59.
    Wert SE, Whitsett JA, Nogee LM. Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol. 2009;12(4):253–74. PubMed Epub 2009/02/18. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Turcu S, Ashton E, Jenkins L, Gupta A, Mok Q. Genetic testing in children with surfactant dysfunction. Arch Dis Child. 2013;98(7):490–5. PubMed Epub 2013/04/30. eng.PubMedCrossRefGoogle Scholar
  61. 61.
    Edwards V, Cutz E, Viero S, Moore AM, Nogee L. Ultrastructure of lamellar bodies in congenital surfactant deficiency. Ultrastruct Pathol. 2005;29(6):503–9. PubMed Epub 2005/12/01. eng.PubMedCrossRefGoogle Scholar
  62. 62.
    Bruder E, Hofmeister J, Aslanidis C, Hammer J, Bubendorf L, Schmitz G, et al. Ultrastructural and molecular analysis in fatal neonatal interstitial pneumonia caused by a novel ABCA3 mutation. Mod Pathol. 2007;20(10):1009–18. PubMed Epub 2007/07/31. eng.PubMedCrossRefGoogle Scholar
  63. 63.
    Flamein F, Riffault L, Muselet-Charlier C, Pernelle J, Feldmann D, Jonard L, et al. Molecular and cellular characteristics of ABCA3 mutations associated with diffuse parenchymal lung diseases in children. Hum Mol Genet. 2011;21(4):765–75. PubMed Epub 2011/11/10. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Carrera P, Ferrari M, Presi S, Ventura L, Vergani B, Lucchini V, et al. Null ABCA3 in humans: large homozygous ABCA3 deletion, correlation to clinical-pathological findings. Pediatr Pulmonol. 2014;49(3):E116–20. PubMed Epub 2014/01/15. eng.PubMedCrossRefGoogle Scholar
  65. 65.
    Citti A, Peca D, Petrini S, Cutrera R, Biban P, Haass C, et al. Ultrastructural characterization of genetic diffuse lung diseases in infants and children: a cohort study and review. Ultrastruct Pathol. 2013;37(5):356–65. PubMed Epub 2013/09/21. eng.PubMedCrossRefGoogle Scholar
  66. 66.
    Somaschini M, Nogee LM, Sassi I, Danhaive O, Presi S, Boldrini R, et al. Unexplained neonatal respiratory distress due to congenital surfactant deficiency. J Pediatr. 2007;150(6):649–53, 53.e1. PubMed Epub 2007/05/23. eng.Google Scholar
  67. 67.
    Wambach JA, Wegner DJ, Depass K, Heins H, Druley TE, Mitra RD, et al. Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome. Pediatrics. 2012;130(6):e1575–82. PubMed Epub 2012/11/21. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bullard JE, Wert SE, Whitsett JA, Dean M, Nogee LM. ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med. 2005;172(8):1026–31. PubMed Epub 2005/06/25. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Saugstad OD, Hansen TW, Ronnestad A, Nakstad B, Tollofsrud PA, Reinholt F, et al. Novel mutations in the gene encoding ATP binding cassette protein member A3 (ABCA3) resulting in fatal neonatal lung disease. Acta Paediatr. 2007;96(2):185–90. PubMed Epub 2007/04/13. eng.PubMedCrossRefGoogle Scholar
  70. 70.
    Goncalves JP, Pinheiro L, Costa M, Silva A, Goncalves A, Pereira A. Novel ABCA3 mutations as a cause of respiratory distress in a term newborn. Gene. 2014;534(2):417–20. PubMed Epub 2013/11/26. eng.PubMedCrossRefGoogle Scholar
  71. 71.
    Fitzgerald ML, Xavier R, Haley KJ, Welti R, Goss JL, Brown CE, et al. ABCA3 inactivation in mice causes respiratory failure, loss of pulmonary surfactant, and depletion of lung phosphatidylglycerol. J Lipid Res. 2007;48(3):621–32. PubMed Epub 2006/12/05. eng.PubMedCrossRefGoogle Scholar
  72. 72.
    Besnard V, Matsuzaki Y, Clark J, Xu Y, Wert SE, Ikegami M, et al. Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice. Am J Physiol Lung Cell Mol Physiol. 2010;298(5):L646–59. PubMed Epub 2010/03/02. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wambach JA, Casey AM, Fishman MP, Wegner DJ, Wert SE, Cole FS, et al. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med. 2014;189(12):1538–43. PubMed Epub 2014/05/30. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med. 2004;350(13):1296–303. PubMed.PubMedCrossRefGoogle Scholar
  75. 75.
    Naderi HM, Murray JC, Dagle JM. Single mutations in ABCA3 increase the risk for neonatal respiratory distress syndrome in late preterm infants (gestational age 34–36 weeks). Am J Med Genet A. 2014;164A(10):2676–8. PubMed Epub 2014/07/31. eng.PubMedCrossRefGoogle Scholar
  76. 76.
    Karjalainen MK, Haataja R, Hallman M. Haplotype analysis of ABCA3: association with respiratory distress in very premature infants. Ann Med. 2008;40(1):56–65. PubMed.PubMedCrossRefGoogle Scholar
  77. 77.
    Shanklin DR, Mullins AC, Baldwin HS. Cerebropulmonary dysgenetic syndrome. Exp Mol Pathol. 2008;85(2):112–6. PubMed Epub 2008/07/08. eng.PubMedCrossRefGoogle Scholar
  78. 78.
    Hartel C, Felderhoff-Muser U, Gebauer C, Hoehn T, Kribs A, Laux R, et al. ATP-binding cassette member A3 (E292V) gene mutation and pulmonary morbidity in very-low-birth-weight infants. Acta Paediatr. 2011;101(4):380–3. PubMed Epub 2011/12/08. eng.CrossRefGoogle Scholar
  79. 79.
    Nogee LM. Genetic mechanisms of surfactant deficiency. Biol Neonate. 2004;85(4):314–8. PubMed Epub 2004/06/26. eng.PubMedCrossRefGoogle Scholar
  80. 80.
    Makri V, Hospes B, Stoll-Becker S, Borkhardt A, Gortner L. Polymorphisms of surfactant protein B encoding gene: modifiers of the course of neonatal respiratory distress syndrome? Eur J Pediatr. 2002;161(11):604–8. PubMed.PubMedCrossRefGoogle Scholar
  81. 81.
    Rova M, Haataja R, Marttila R, Ollikainen V, Tammela O, Hallman M. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia. Hum Mol Genet. 2004;13(11):1095–104. PubMed.PubMedCrossRefGoogle Scholar
  82. 82.
    Cai BH, Chang LW, Li WB, Liu W, Wang XJ, Mo LX, et al. Association of surfactant protein B gene polymorphisms (C/A-18, C/T1580, intron 4 and A/G9306) and haplotypes with bronchopulmonary dysplasia in chinese han population. J Huazhong Univ Sci Technol Med Sci. 2013;33(3):323–8. PubMed Epub 2013/06/19. eng.PubMedCrossRefGoogle Scholar
  83. 83.
    Yin X, Meng F, Wang Y, Xie L, Kong X, Feng Z. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population. Int J Clin Exp Pathol. 2013;6(2):267–72. PubMed Epub 2013/01/19. eng.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Taponen S, Huusko JM, Petaja-Repo UE, Paananen R, Guttentag SH, Hallman M, et al. Allele-specific N-glycosylation delays human surfactant protein B secretion in vitro and associates with decreased protein levels in vivo. Pediatr Res. 2013;74(6):646–51. PubMed Epub 2013/09/05. eng.PubMedCrossRefGoogle Scholar
  85. 85.
    Marttila R, Haataja R, Guttentag S, Hallman M. Surfactant protein A and B genetic variants in respiratory distress syndrome in singletons and twins. Am J Respir Crit Care Med. 2003;168(10):1216–22. PubMed.PubMedCrossRefGoogle Scholar
  86. 86.
    Marttila R, Haataja R, Ramet M, Lofgren J, Hallman M. Surfactant protein B polymorphism and respiratory distress syndrome in premature twins. Hum Genet. 2003;112(1):18–23. PubMed.PubMedCrossRefGoogle Scholar
  87. 87.
    Hamvas A, Heins HB, Guttentag SH, Wegner DJ, Trusgnich MA, Bennet KW, et al. Developmental and genetic regulation of human surfactant protein B in vivo. Neonatology. 2009;95(2):117–24. PubMed Epub 2008/09/09. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wambach JA, Yang P, Wegner DJ, An P, Hackett BP, Cole FS, et al. Surfactant protein-C promoter variants associated with neonatal respiratory distress syndrome reduce transcription. Pediatr Res. 2010;68(3):216–20. PubMed Epub 2010/06/12. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Peca D, Boldrini R, Johannson J, Shieh JT, Citti A, Petrini S, et al. Clinical and ultrastructural spectrum of diffuse lung disease associated with surfactant protein C mutations. Eur J Hum Genet. 2015;23(8):1033–41. PubMed Epub 2015/03/19. eng.Google Scholar
  90. 90.
    Jon C, Nolan PK, Ekong M, Mosquera RA, Stark JM. SFTPC gene mutation p.R167Q in a premature infant. Pediatr Pulmonol. 2013;49(3):E66–8. PubMed Epub 2013/06/19. eng.PubMedCrossRefGoogle Scholar
  91. 91.
    Rosen DM, Waltz DA. Hydroxychloroquine and surfactant protein C deficiency. N Engl J Med. 2005;352(2):207–8. PubMed Epub 2005/01/14. eng.PubMedCrossRefGoogle Scholar
  92. 92.
    Hepping N, Griese M, Lohse P, Garbe W, Lange L. Successful treatment of neonatal respiratory failure caused by a novel surfactant protein C p.Cys121Gly mutation with hydroxychloroquine. J Perinatol. 2013;33(6):492–4. PubMed Epub 2013/05/31. eng.PubMedCrossRefGoogle Scholar
  93. 93.
    Lord A, Shapiro AJ, Saint-Martin C, Claveau M, Melancon S, Wintermark P. Filamin A mutation may be associated with diffuse lung disease mimicking bronchopulmonary dysplasia in premature newborns. Respir Care. 2014;59(11):e171–7. PubMed Epub 2014/07/24. eng.PubMedCrossRefGoogle Scholar
  94. 94.
    Peca D, Petrini S, Tzialla C, Boldrini R, Morini F, Stronati M, et al. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect. Respir Res. 2011;12:115. PubMed Epub 2011/08/27. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Pohlenz J, Dumitrescu A, Zundel D, Martine U, Schonberger W, Koo E, et al. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J Clin Invest. 2002;109(4):469–73. PubMed Epub 2002/02/21. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Salerno T, Peca D, Menchini L, Schiavino A, Petreschi F, Occasi F, et al. Respiratory insufficiency in a newborn with congenital hypothyroidism due to a new mutation of TTF-1/NKX2.1 gene. Pediatr Pulmonol. 2014;49(3):E42–4. PubMed Epub 2013/09/03. eng.PubMedCrossRefGoogle Scholar
  97. 97.
    Kleinlein B, Griese M, Liebisch G, Krude H, Lohse P, Aslanidis C, et al. Fatal neonatal respiratory failure in an infant with congenital hypothyroidism due to haploinsufficiency of the NKX2-1 gene: alteration of pulmonary surfactant homeostasis. Arch Dis Child Fetal Neonatal Ed. 2010;96(6):F453–6. PubMed Epub 2010/06/30. eng.PubMedCrossRefGoogle Scholar
  98. 98.
    Yin X, Wang H, Wu D, Zhao G, Shao J, Dai Y. SLC34A2 Gene mutation of pulmonary alveolar microlithiasis: report of four cases and review of literatures. Respir Med. 2012;107(2):217–22. PubMed Epub 2012/11/21. eng.PubMedCrossRefGoogle Scholar
  99. 99.
    Whitsett JA, Wert SE, Weaver TE. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med. 2009;61:105–19. PubMed Epub 2009/10/15. eng.CrossRefGoogle Scholar
  100. 100.
    Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002;109(2):330–8. PubMed.CrossRefGoogle Scholar
  101. 101.
    Huh DD. A human breathing lung-on-a-chip. Ann Am Thorac Soc. 2015;12 Suppl 1:S42–4. PubMed Epub 2015/04/02. eng.PubMedCrossRefGoogle Scholar
  102. 102.
    Kazzi SN, Quasney MW. Deletion allele of angiotensin-converting enzyme is associated with increased risk and severity of bronchopulmonary dysplasia. J Pediatr. 2005;147(6):818–22. PubMed.PubMedCrossRefGoogle Scholar
  103. 103.
    Ryckman KK, Dagle JM, Kelsey K, Momany AM, Murray JC. Genetic associations of surfactant protein D and angiotensin-converting enzyme with lung disease in preterm neonates. J Perinatol. 2011;32(5):349–55. PubMed Epub 2011/10/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Concolino P, Capoluongo E, Santonocito C, Vento G, Tana M, Romagnoli C, et al. Genetic analysis of the dystroglycan gene in bronchopulmonary dysplasia affected premature newborns. Clin Chim Acta. 2007;378(1–2):164–7. PubMed Epub 2007/01/02. eng.PubMedCrossRefGoogle Scholar
  105. 105.
    Hartel C, Konig I, Koster S, Kattner E, Kuhls E, Kuster H, et al. Genetic polymorphisms of hemostasis genes and primary outcome of very low birth weight infants. Pediatrics. 2006;118(2):683–9. PubMed.PubMedCrossRefGoogle Scholar
  106. 106.
    Rezvani M, Wilde J, Vitt P, Mailaparambil B, Grychtol R, Krueger M, et al. Association of a FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis Markers. 2013;35(6):633–40. PubMed Epub 2013/11/30. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Manar MH, Brown MR, Gauthier TW, Brown LA. Association of glutathione-S-transferase-P1 (GST-P1) polymorphisms with bronchopulmonary dysplasia. J Perinatol. 2004;24(1):30–5. PubMed.PubMedCrossRefGoogle Scholar
  108. 108.
    Rocha G, Proenca E, Areias A, Freitas F, Lima B, Rodrigues T, et al. HLA and bronchopulmonary dysplasia susceptibility: a pilot study. Dis Markers. 2011;31(4):199–203. PubMed Epub 2011/11/03. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bokodi G, Derzbach L, Banyasz I, Tulassay T, Vasarhelyi B. Association of interferon gamma T+874A and interleukin 12 p40 promoter CTCTAA/GC polymorphism with the need for respiratory support and perinatal complications in low birthweight neonates. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F25–9. PubMed.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Yanamandra K, Boggs P, Loggins J, Baier RJ. Interleukin-10 -1082 G/A polymorphism and risk of death or bronchopulmonary dysplasia in ventilated very low birth weight infants. Pediatr Pulmonol. 2005;39(5):426–32. PubMed.PubMedCrossRefGoogle Scholar
  111. 111.
    Hilgendorff A, Heidinger K, Pfeiffer A, Bohnert A, Konig IR, Ziegler A, et al. Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants. Genes Immun. 2007;8(8):671–7. PubMed Epub 2007/09/28. eng.PubMedCrossRefGoogle Scholar
  112. 112.
    Prencipe G, Auriti C, Inglese R, Devito R, Ronchetti MP, Seganti G, et al. A polymorphism in the macrophage migration inhibitory factor promoter is associated with bronchopulmonary dysplasia. Pediatr Res. 2010;69(2):142–7. PubMed Epub 2010/11/04. eng.CrossRefGoogle Scholar
  113. 113.
    Hadchouel A, Decobert F, Franco-Montoya ML, Halphen I, Jarreau PH, Boucherat O, et al. Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development. PLoS One. 2008;3(9):e3188. PubMed.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Derzbach L, Bokodi G, Treszl A, Vasarhelyi B, Nobilis A, Rigo Jr J. Selectin polymorphisms and perinatal morbidity in low-birthweight infants. Acta Paediatr. 2006;95(10):1213–7. PubMed.PubMedCrossRefGoogle Scholar
  115. 115.
    Giusti B, Vestrini A, Poggi C, Magi A, Pasquini E, Abbate R, et al. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants. Free Radic Res. 2012;46(9):1130–9. PubMed Epub 2012/05/12. eng.PubMedCrossRefGoogle Scholar
  116. 116.
    Weber B, Borkhardt A, Stoll-Becker S, Reiss I, Gortner L. Polymorphisms of surfactant protein A genes and the risk of bronchopulmonary dysplasia in preterm infants. Turk J Pediatr. 2000;42(3):181–5. PubMed.PubMedGoogle Scholar
  117. 117.
    Pavlovic J, Papagaroufalis C, Xanthou M, Liu W, Fan R, Thomas NJ, et al. Genetic variants of surfactant proteins A, B, C, and D in bronchopulmonary dysplasia. Dis Markers. 2006;22(5–6):277–91. PubMed.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sampath V, Garland JS, Le M, Patel AL, Konduri GG, Cohen JD, et al. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;47(5):460–8. PubMed Epub 2011/11/08. eng.PubMedCrossRefGoogle Scholar
  119. 119.
    Mailaparambil B, Krueger M, Heizmann U, Schlegel K, Heinze J, Heinzmann A. Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis Markers. 2010;29(1):1–9. PubMed Epub 2010/09/10. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Elhawary NA, Tayeb MT, Abdel-Ghafar S, Rashad M, Alkhotani AA. TNF-238 polymorphism may predict bronchopulmonary dysplasia among preterm infants in the Egyptian population. Pediatr Pulmonol. 2013;48(7):699–706. PubMed Epub 2013/01/30. eng.PubMedCrossRefGoogle Scholar
  121. 121.
    Kazzi SN, Kim UO, Quasney MW, Buhimschi I. Polymorphism of tumor necrosis factor-alpha and risk and severity of bronchopulmonary dysplasia among very low birth weight infants. Pediatrics. 2004;114(2):e243–8. PubMed.PubMedCrossRefGoogle Scholar
  122. 122.
    Kazzi SN, Jacques SM, Qureshi F, Quasney MW, Kim UO, Buhimschi IA. Tumor necrosis factor-alpha allele lymphotoxin-alpha+250 is associated with the presence and severity of placental inflammation among preterm births. Pediatr Res. 2004;56(1):94–8. PubMed.PubMedCrossRefGoogle Scholar
  123. 123.
    Strassberg SS, Cristea IA, Qian D, Parton LA. Single nucleotide polymorphisms of tumor necrosis factor-alpha and the susceptibility to bronchopulmonary dysplasia. Pediatr Pulmonol. 2007;42(1):29–36. PubMed.PubMedCrossRefGoogle Scholar
  124. 124.
    Chauhan M, Bombell S, McGuire W. Tumour necrosis factor (−308A) polymorphism in very preterm infants with bronchopulmonary dysplasia: a meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2009;94(4):F257–9. PubMed Epub 2008/12/11. eng.PubMedCrossRefGoogle Scholar
  125. 125.
    Kwinta P, Bik-Multanowski M, Mitkowska Z, Tomasik T, Legutko M, Pietrzyk JJ. Genetic risk factors of bronchopulmonary dysplasia. Pediatr Res. 2008;64(6):682–8. PubMed Epub 2008/07/11. eng.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Child and Family Research InstituteVancouverCanada
  2. 2.Division of Neonatology, Department of PediatricsUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Pediatrics, Division of NeonatologyChildren’s and Women’s Health Centre of British ColumbiaVancouverCanada

Personalised recommendations