Chronic Obstructive Pulmonary Disease Following Bronchopulmonary Dysplasia

  • Alice HadchouelEmail author
  • Christophe Delacourt
Part of the Respiratory Medicine book series (RM)


Chronic obstructive pulmonary disease (COPD) in adults is characterized by a slowly progressive airflow limitation that is not fully reversible. The quality of fetal/neonatal lung development is critical to the level of pulmonary function in adults. Because premature birth is associated with a definitive obstructive airflow pattern in children and adults, it may represent a significant risk factor for the occurrence of COPD. The mechanisms contributing to this persistent obstruction, despite major advances in neonatal care, remain hypothetical. Impaired alveolarization may contribute to changes in respiratory mechanics, by reducing attachments between bronchioles and alveoli, resulting in an obstructive profile. It is also possible that molecular factors involved in branching morphogenesis have additional roles in later stages of development, thus contributing to disrupted airway growth. Finally, recent data suggest that accelerated cellular aging would also contribute to the long-term respiratory consequences of premature birth. In adolescents and young adults born prematurely and having a functional impairment, progressive decline to the diagnostic threshold of COPD would be even faster if and when active smoking is started. Active measures are warranted at an early stage to prevent/ameliorate the decline in lung function in COPD following the scenario of premature birth and BPD.


Preterm Airway Alveolarization Lung function Smoking 


  1. 1.
    Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27(2):397–412.CrossRefPubMedGoogle Scholar
  3. 3.
    Halbert RJ, Isonaka S, George D, Iqbal A. Interpreting COPD prevalence estimates: what is the true burden of disease? Chest. 2003;123(5):1684–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Kohler M, Sandberg A, Kjellqvist S, Thomas A, Karimi R, Nyren S, et al. Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(3):743–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Rennard SI, Drummond MB. Early chronic obstructive pulmonary disease: definition, assessment, and prevention. Lancet. 2015;385(9979):1778–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718.CrossRefPubMedGoogle Scholar
  7. 7.
    Lamprecht B, McBurnie MA, Vollmer WM, Gudmundsson G, Welte T, Nizankowska-Mogilnicka E, et al. COPD in never smokers: results from the population-based burden of obstructive lung disease study. Chest. 2011;139(4):752–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 2015;385(9971):899–909.CrossRefPubMedGoogle Scholar
  9. 9.
    Kalhan R, Arynchyn A, Colangelo LA, Dransfield MT, Gerald LB, Smith LJ. Lung function in young adults predicts airflow obstruction 20 years later. Am J Med. 2010;123(5):468.e1–7.CrossRefGoogle Scholar
  10. 10.
    Lange P, Celli B, Agustí A, Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Barker DJ, Godfrey KM, Fall C, Osmond C, Winter PD, Shaheen SO. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ. 1991;303(6804):671–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stern DA, Morgan WJ, Wright AL, Guerra S, Martinez FD. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet. 2007;370(9589):758–64.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hollams EM, de Klerk NH, Holt PG, Sly PD. Persistent effects of maternal smoking during pregnancy on lung function and asthma in adolescents. Am J Respir Crit Care Med. 2014;189(4):401–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Hayatbakhsh MR, Sadasivam S, Mamun AA, Najman JM, Williams GM, O’Callaghan MJ. Maternal smoking during and after pregnancy and lung function in early adulthood: a prospective study. Thorax. 2009;64(9):810–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Wongtrakool C, Wang N, Hyde DM, Roman J, Spindel ER. Prenatal nicotine exposure alters lung function and airway geometry through alpha7 nicotinic receptors. Am J Respir Cell Mol Biol. 2012;46(5):695–702.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hadchouel A, Franco-Montoya ML, Delacourt C. Altered lung development in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):158–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29:710–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Mahut B, De Blic J, Emond S, Benoist MR, Jarreau PH, Lacaze-Masmonteil T, et al. Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F459–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67(1):54–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Fakhoury KF, Sellers C, Smith EO, Rama JA, Fan LL. Serial measurements of lung function in a cohort of young children with bronchopulmonary dysplasia. Pediatrics. 2010;125(6):e1441–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant: lessons learned from animal models. Am J Respir Cell Mol Biol. 2014;50(2):233–45.Google Scholar
  26. 26.
    Kovar J, Willet KE, Hislop A, Sly PD. Impact of postnatal glucocorticoids on early lung development. J Appl Physiol (1985). 2005;98(3):881–8.CrossRefGoogle Scholar
  27. 27.
    Elliot J, Carroll N, Bosco M, McCrohan M, Robinson P. Increased airway responsiveness and decreased alveolar attachment points following in utero smoke exposure in the guinea pig. Am J Respir Crit Care Med. 2001;163(1):140–4.CrossRefPubMedGoogle Scholar
  28. 28.
    O’Reilly M, Harding R, Sozo F. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. Neonatology. 2014;105(1):39–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Morrisey E, Hogan B. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8–23.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS. FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L550–8.CrossRefPubMedGoogle Scholar
  31. 31.
    El Agha E, Bellusci S. Walking along the fibroblast growth factor 10 route: a key pathway to understand the control and regulation of epithelial and mesenchymal cell-lineage formation during lung development and repair after injury. Scientifica (Cairo). 2014;2014:538379.Google Scholar
  32. 32.
    Hokuto I, Perl AK, Whitsett JA. Prenatal, but not postnatal, inhibition of fibroblast growth factor receptor signaling causes emphysema. J Biol Chem. 2003;278(1):415–21.CrossRefPubMedGoogle Scholar
  33. 33.
    El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, et al. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development. 2014;141(2):296–306.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, et al. Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol. 2007;307(2):237–47.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Volckaert T, Campbell A, De Langhe S. c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse. PLoS One. 2013;8(8):e71426.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Klar J, Blomstrand P, Brunmark C, Badhai J, Hakansson HF, Brange CS, et al. Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease. J Med Genet. 2011;48(10):705–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45–52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):36–44.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Van Durme YM, Eijgelsheim M, Joos GF, Hofman A, Uitterlinden AG, Brusselle GG, et al. Hedgehog-interacting protein is a COPD susceptibility gene: the Rotterdam study. Eur Respir J. 2010;36(1):89–95.CrossRefPubMedGoogle Scholar
  41. 41.
    Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, et al. A genome-wide association study of pulmonary function measures in the Framingham heart study. PLoS Genet. 2009;5(3):e1000429.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kerkhof M, Boezen HM, Granell R, Wijga AH, Brunekreef B, Smit HA, et al. Transient early wheeze and lung function in early childhood associated with chronic obstructive pulmonary disease genes. J Allergy Clin Immunol. 2014;133(1):68–76.e1–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Roos AB, Berg T, Nord M. A relationship between epithelial maturation, bronchopulmonary dysplasia, and chronic obstructive pulmonary disease. Pulm Med. 2012;2012:196194.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Basseres DS, Levantini E, Ji H, Monti S, Elf S, Dayaram T, et al. Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice. Mol Cell Biol. 2006;26(3):1109–23.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Didon L, Roos AB, Elmberger GP, Gonzalez FJ, Nord M. Lung-specific inactivation of CCAAT/enhancer binding protein alpha causes a pathological pattern characteristic of COPD. Eur Respir J. 2010;35(1):186–97.CrossRefPubMedGoogle Scholar
  46. 46.
    Roos AB, Berg T, Barton JL, Didon L, Nord M. Airway epithelial cell differentiation during lung organogenesis requires C/EBPalpha and C/EBPbeta. Dev Dyn. 2012;241(5):911–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Sato A, Xu Y, Whitsett JA, Ikegami M. CCAAT/enhancer binding protein-alpha regulates the protease/antiprotease balance required for bronchiolar epithelium regeneration. Am J Respir Cell Mol Biol. 2012;47(4):454–63.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Didon L, Qvarfordt I, Andersson O, Nord M, Riise GC. Decreased CCAAT/enhancer binding protein transcription factor activity in chronic bronchitis and COPD. Chest. 2005;127(4):1341–6.PubMedGoogle Scholar
  49. 49.
    Liu C, Morrisey EE, Whitsett JA. GATA-6 is required for maturation of the lung in late gestation. Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L468–75.CrossRefPubMedGoogle Scholar
  50. 50.
    Liu C, Ikegami M, Stahlman MT, Dey CR, Whitsett JA. Inhibition of alveolarization and altered pulmonary mechanics in mice expressing GATA-6. Am J Physiol Lung Cell Mol Physiol. 2003;285(6):L1246–54.CrossRefPubMedGoogle Scholar
  51. 51.
    Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009;136(13):2297–307.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tsao PN, Wei SC, Wu MF, Huang MT, Lin HY, Lee MC, et al. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development. 2011;138(16):3533–43.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, et al. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem. 2008;283(43):29532–44.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tilley AE, Harvey BG, Heguy A, Hackett NR, Wang R, O’Connor TP, et al. Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179(6):457–66.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136(11):1899–907.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108(7):949–55.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-kappaB pathways. Immunology. 2015;144(1):79–90.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fineschi S, De Cunto G, Facchinetti F, Civelli M, Imbimbo BP, Carnini C, et al. Receptor for advanced glycation end products contributes to postnatal pulmonary development and adult lung maintenance program in mice. Am J Respir Cell Mol Biol. 2013;48(2):164–71.CrossRefPubMedGoogle Scholar
  59. 59.
    Carolan BJ, Hughes G, Morrow J, Hersh CP, O’Neal WK, Rennard S, et al. The association of plasma biomarkers with computed tomography-assessed emphysema phenotypes. Respir Res. 2014;15:127.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cheng DT, Kim DK, Cockayne DA, Belousov A, Bitter H, Cho MH, et al. Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(8):948–57.CrossRefPubMedGoogle Scholar
  61. 61.
    Sambamurthy N, Leme AS, Oury TD, Shapiro SD. The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One. 2015;10(3):e0118979.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Albrecht E, Sillanpaa E, Karrasch S, Alves AC, Codd V, Hovatta I, et al. Telomere length in circulating leukocytes is associated with lung function and disease. Eur Respir J. 2014;43(4):983–92.CrossRefPubMedGoogle Scholar
  63. 63.
    Vassallo PF, Simoncini S, Ligi I, Chateau AL, Bachelier R, Robert S, et al. Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood. 2014;123(13):2116–26.CrossRefPubMedGoogle Scholar
  64. 64.
    Hadchouel A, Marchand-Martin L, Franco-Montoya M, Peaudecerf L, Ancel P, Delacourt C, et al. Salivary telomere length and lung function in adolescents born very preterm. PLoS One. 2015;in press.Google Scholar
  65. 65.
    Filippone M, Bonetto G, Corradi M, Frigo AC, Baraldi E. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Eur Respir J. 2012;40(5):1253–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Carraro S, Giordano G, Pirillo P, Maretti M, Reniero F, Cogo PE, et al. Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach. J Pediatr. 2015;166(2):234–9.e1.CrossRefPubMedGoogle Scholar
  67. 67.
    Rode L, Bojesen SE, Weischer M, Vestbo J, Nordestgaard BG. Short telomere length, lung function and chronic obstructive pulmonary disease in 46,396 individuals. Thorax. 2013;68(5):429–35.CrossRefPubMedGoogle Scholar
  68. 68.
    Savale L, Chaouat A, Bastuji-Garin S, Marcos E, Boyer L, Maitre B, et al. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179(7):566–71.CrossRefPubMedGoogle Scholar
  69. 69.
    Bourbon JR, Boucherat O, Boczkowski J, Crestani B, Delacourt C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med. 2009;15(4):169–79.CrossRefPubMedGoogle Scholar
  70. 70.
    Upton MN, Smith GD, McConnachie A, Hart CL, Watt GC. Maternal and personal cigarette smoking synergize to increase airflow limitation in adults. Am J Respir Crit Care Med. 2004;169(4):479–87.CrossRefPubMedGoogle Scholar
  71. 71.
    Guerra S, Stern DA, Zhou M, Sherrill DL, Wright AL, Morgan WJ, et al. Combined effects of parental and active smoking on early lung function deficits: a prospective study from birth to age 26 years. Thorax. 2013;68(11):1021–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mullane D, Turner SW, Cox DW, Goldblatt J, Landau LI, le Souef PN. Reduced infant lung function, active smoking, and wheeze in 18-year-old individuals. JAMA Pediatr. 2013;167(4):368–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Pediatric Pulmonology, Necker-Enfants Malades HospitalParisFrance
  2. 2.INSERMCréteilFrance
  3. 3.Paris-Descartes University, Sorbonne Paris CitéParisFrance

Personalised recommendations