Bronchopulmonary Dysplasia pp 55-77 | Cite as
Pre and Postnatal Inflammation in the Pathogenesis of Bronchopulmonary Dysplasia
- 3 Citations
- 991 Downloads
Abstract
Pathogenesis of bronchopulmonary dysplasia (BPD) is most likely multifactorial, and involvement of different pathogenetic mechanisms might lead to severe, mild, or moderate disease. BPD is characterized by inflammation, apoptosis, and extensive extracellular matrix remodeling. Pre and postnatal injurious conditions, such as chorioamnionitis, neonatal infection, hyperoxia, hypoxia, or mechanical ventilation have been shown to contribute to the onset and perpetuation of an inflammatory response in the functionally and structurally immature lungs of preterm infants. Perturbation of pro- and anti-inflammatory central signaling pathways and subsequently imbalanced inflammatory responses may lead to aberrant airway-branching and impaired development of epithelial, mesenchymal, and endothelial structures, seriously affecting lung development during a window of vulnerability in genetically susceptible infants. Alterations of normal alveolarization and pulmonary vascular development may result in lifelong impairment of lung function.
Keywords
Preterm infants Bronchopulmonary dysplasia Chorioamnionitis Systemic fetal inflammatory response Inflammation Immaturity Barotrauma Oxygen therapy Window of vulnerability Genetic susceptibilityReferences
- 1.Philip AG. Bronchopulmonary dysplasia: then and now. Neonatology. 2012;102(1):1–8.PubMedCrossRefGoogle Scholar
- 2.Reyburn B, Martin RJ, Prakash YS, MacFarlane PM. Mechanisms of injury to the preterm lung and airway: implications for long-term pulmonary outcome. Neonatology. 2012;101(4): 345–52.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Hallman M, Curstedt T, Halliday HL, Saugstad OD, Speer CP. Better neonatal outcomes: oxygen, surfactant and drug delivery. Preface. Neonatology. 2013;103(4):316–9.PubMedCrossRefGoogle Scholar
- 4.Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7): 357–68.PubMedCrossRefGoogle Scholar
- 5.Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2011;23(2):167–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Baker CD, Abman SH. Impaired pulmonary vascular development in bronchopulmonary dysplasia. Neonatology. 2015;107(4):344–51.PubMedCrossRefGoogle Scholar
- 8.Speer CP. Neonatal respiratory distress syndrome: an inflammatory disease? Neonatology. 2011;99(4):316–9.PubMedCrossRefGoogle Scholar
- 9.Garcia-Munoz Rodrigo F, Galan Henriquez G, Figueras Aloy J, Garcia-Alix Perez A. Outcomes of very-low-birth-weight infants exposed to maternal clinical chorioamnionitis: a multicentre study. Neonatology. 2014;106(3):229–34.PubMedCrossRefGoogle Scholar
- 10.Thomas W, Speer CP. Chorioamnionitis is essential in the evolution of bronchopulmonary dysplasia—the case in favour. Paediatr Respir Rev. 2014;15(1):49–52.PubMedGoogle Scholar
- 11.Cullen AB, Cooke PH, Driska SP, Wolfson MR, Shaffer TH. The impact of mechanical ventilation on immature airway smooth muscle: functional, structural, histological, and molecular correlates. Biol Neonate. 2006;90(1):17–27.PubMedCrossRefGoogle Scholar
- 12.Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology. 2009;95(4):353–61.PubMedCrossRefGoogle Scholar
- 13.Vogel ER, Britt Jr RD, Trinidad MC, Faksh A, Martin RJ, MacFarlane PM, et al. Perinatal oxygen in the developing lung. Can J Physiol Pharmacol. 2015;93(2):119–27.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Thome U, Gotze-Speer B, Speer CP, Pohlandt F. Comparison of pulmonary inflammatory mediators in preterm infants treated with intermittent positive pressure ventilation or high frequency oscillatory ventilation. Pediatr Res. 1998;44(3):330–7.PubMedCrossRefGoogle Scholar
- 15.Bose CL, Dammann CE, Laughon MM. Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F455–61.PubMedCrossRefGoogle Scholar
- 16.Viscardi RM. Perinatal inflammation and lung injury. Semin Fetal Neonatal Med. 2012;17(1): 30–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Speer CP, Gahr M, Wieland M, Eber S. Phagocytosis-associated functions in neonatal monocyte-derived macrophages. Pediatr Res. 1988;24(2):213–6.PubMedCrossRefGoogle Scholar
- 18.Grigg JM, Savill JS, Sarraf C, Haslett C, Silverman M. Neutrophil apoptosis and clearance from neonatal lungs. Lancet. 1991;338(8769):720–2.PubMedCrossRefGoogle Scholar
- 19.Kramer BW, Jobe AH, Ikegami M. Monocyte function in preterm, term, and adult sheep. Pediatr Res. 2003;54(1):52–7.PubMedCrossRefGoogle Scholar
- 20.Nguyen CN, Schnulle PM, Chegini N, Luo X, Koenig JM. Neonatal neutrophils with prolonged survival secrete mediators associated with chronic inflammation. Neonatology. 2010;98(4):341–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Abman SH. Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1755–6.PubMedCrossRefGoogle Scholar
- 22.Ueda K, Cho K, Matsuda T, Okajima S, Uchida M, Kobayashi Y, et al. A rat model for arrest of alveolarization induced by antenatal endotoxin administration. Pediatr Res. 2006;59(3): 396–400.PubMedCrossRefGoogle Scholar
- 23.Grigsby PL, Novy MJ, Sadowsky DW, Morgan TK, Long M, Acosta E, et al. Maternal azithromycin therapy for Ureaplasma intraamniotic infection delays preterm delivery and reduces fetal lung injury in a primate model. Am J Obstet Gynecol. 2012;207(6):475.e1–14.CrossRefGoogle Scholar
- 24.Nair V, Loganathan P, Soraisham AS. Azithromycin and other macrolides for prevention of bronchopulmonary dysplasia: a systematic review and meta-analysis. Neonatology. 2014;106(4):337–47.PubMedCrossRefGoogle Scholar
- 25.Morley CJ. CPAP and low oxygen saturation for very preterm babies? N Engl J Med. 2010;362(21):2024–6.PubMedCrossRefGoogle Scholar
- 26.Martin RJ, Fanaroff AA. The preterm lung and airway: past, present, and future. Pediatr Neonatol. 2013;54(4):228–34.PubMedCrossRefGoogle Scholar
- 27.Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2015;169(4):332–40.PubMedCrossRefGoogle Scholar
- 28.Saugstad OD. Delivery room management of term and preterm newly born infants. Neonatology. 2015;107(4):365–71.PubMedCrossRefGoogle Scholar
- 29.Paananen R, Husa AK, Vuolteenaho R, Herva R, Kaukola T, Hallman M. Blood cytokines during the perinatal period in very preterm infants: relationship of inflammatory response and bronchopulmonary dysplasia. J Pediatr. 2009;154(1):39–43.e3.PubMedCrossRefGoogle Scholar
- 30.Piersigilli F, Bhandari V. Biomarkers in neonatology: the new “omics” of bronchopulmonary dysplasia. J Matern Fetal Neonatal Med. 2015;10:1–7. [Epub ahead of print].Google Scholar
- 31.Hallman M, Marttila R, Pertile R, Ojaniemi M, Haataja R. Genes and environment in common neonatal lung disease. Neonatology. 2007;91(4):298–302.PubMedCrossRefGoogle Scholar
- 32.Abman SH, Mourani PM, Sontag M. Bronchopulmonary dysplasia: a genetic disease. Pediatrics. 2008;122(3):658–9.PubMedCrossRefGoogle Scholar
- 33.Lavoie PM, Dube MP. Genetics of bronchopulmonary dysplasia in the age of genomics. Curr Opin Pediatr. 2010;22(2):134–8.PubMedCrossRefGoogle Scholar
- 34.Menon R, Taylor RN, Fortunato SJ. Chorioamnionitis—a complex pathophysiologic syndrome. Placenta. 2010;31(2):113–20.PubMedCrossRefGoogle Scholar
- 35.Combs CA, Gravett M, Garite TJ, Hickok DE, Lapidus J, Porreco R, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e1–15.CrossRefGoogle Scholar
- 36.Onderdonk AB, Delaney ML, DuBois AM, Allred EN, Leviton A, Extremely Low Gestational Age Newborns Study I. Detection of bacteria in placental tissues obtained from extremely low gestational age neonates. American Journal of Obstet Gynecol. 2008;198(1):110.e1–7.Google Scholar
- 37.Speer CP. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med. 2006;11(5):354–62.PubMedCrossRefGoogle Scholar
- 38.Goldenberg RL, Andrews WW, Goepfert AR, Faye-Petersen O, Cliver SP, Carlo WA, et al. The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am J Obstet Gynecol. 2008;198(1):43.e1–5.CrossRefGoogle Scholar
- 39.Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123(5):1314–9.PubMedCrossRefGoogle Scholar
- 40.Lee Y, Kim HJ, Choi SJ, Oh SY, Kim JS, Roh CR, et al. Is there a stepwise increase in neonatal morbidities according to histological stage (or grade) of acute chorioamnionitis and funisitis?: effect of gestational age at delivery. J Perinat Med. 2015;43(2):259–67.PubMedGoogle Scholar
- 41.DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11.PubMedCrossRefGoogle Scholar
- 42.Viscardi RM. Ureaplasma species: role in neonatal morbidities and outcomes. Arch Dis Child Fetal Neonatal Ed. 2014;99(1):F87–92.PubMedPubMedCentralGoogle Scholar
- 43.Lowe J, Watkins WJ, Edwards MO, Spiller OB, Jacqz-Aigrain E, Kotecha SJ, et al. Association between pulmonary ureaplasma colonization and bronchopulmonary dysplasia in preterm infants: updated systematic review and meta-analysis. Pediatr Infect Dis J. 2014;33:697–702.PubMedCrossRefGoogle Scholar
- 44.Heller DS, Rimpel LH, Skurnick JH. Does histologic chorioamnionitis correspond to clinical chorioamnionitis? J Reprod Med. 2008;53(1):25–8.PubMedGoogle Scholar
- 45.Been JV, Zimmermann LJ. Histological chorioamnionitis and respiratory outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2009;94(3):F218–25.PubMedCrossRefGoogle Scholar
- 46.Thomas W, Speer CP. Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome? Neonatology. 2011;99(3):177–87.PubMedCrossRefGoogle Scholar
- 47.Lee J, Oh KJ, Park CW, Park JS, Jun JK, Yoon BH. The presence of funisitis is associated with a decreased risk for the development of neonatal respiratory distress syndrome. Placenta. 2011;32(3):235–40.PubMedCrossRefGoogle Scholar
- 48.Park CW, Park JS, Jun JK, Yoon BH. Mild to moderate, but not minimal or severe, acute histologic chorioamnionitis or intra-amniotic inflammation is associated with a decrease in respiratory distress syndrome of preterm newborns without fetal growth restriction. Neonatology. 2015;108(2):115–23.PubMedCrossRefGoogle Scholar
- 49.Watterberg KL, Demers LM, Scott SM, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics. 1996;97(2): 210–5.PubMedGoogle Scholar
- 50.Kramer BW, Kallapur S, Newnham J, Jobe AH. Prenatal inflammation and lung development. Semin Fetal Neonatal Med. 2009;14(1):2–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Kramer BW, Ladenburger A, Kunzmann S, Speer CP, Been JV, van Iwaarden JF, et al. Intravenous lipopolysaccharide-induced pulmonary maturation and structural changes in fetal sheep. Am J Obstet Gynecol. 2009;200(2):195.e1–10.CrossRefGoogle Scholar
- 52.Hartling L, Liang Y, Lacaze-Masmonteil T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2012;97(1):F8–17.PubMedCrossRefGoogle Scholar
- 53.Van Marter LJ, Dammann O, Allred EN, Leviton A, Pagano M, Moore M, et al. Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr. 2002;140(2):171–6.PubMedCrossRefGoogle Scholar
- 54.Been JV, Rours IG, Kornelisse RF, Jonkers F, de Krijger RR, Zimmermann LJ. Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr. 2010;156(1):10–5. e1.PubMedCrossRefGoogle Scholar
- 55.Inatomi T, Oue S, Ogihara T, Hira S, Hasegawa M, Yamaoka S, et al. Antenatal exposure to Ureaplasma species exacerbates bronchopulmonary dysplasia synergistically with subsequent prolonged mechanical ventilation in preterm infants. Pediatr Res. 2012;71(3):267–73.PubMedCrossRefGoogle Scholar
- 56.Prince LS, Dieperink HI, Okoh VO, Fierro-Perez GA, Lallone RL. Toll-like receptor signaling inhibits structural development of the distal fetal mouse lung. Dev Dyn. 2005;233(2):553–61.PubMedCrossRefGoogle Scholar
- 57.Buhimschi CS, Dulay AT, Abdel-Razeq S, Zhao G, Lee S, Hodgson EJ, et al. Fetal inflammatory response in women with proteomic biomarkers characteristic of intra-amniotic inflammation and preterm birth. BJOG. 2009;116(2):257–67.PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Viscardi RM, Muhumuza CK, Rodriguez A, Fairchild KD, Sun CC, Gross GW, et al. Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants. Pediatr Res. 2004;55(6):1009–17.PubMedCrossRefGoogle Scholar
- 59.Schmidt B, Cao L, Mackensen-Haen S, Kendziorra H, Klingel K, Speer CP. Chorioamnionitis and inflammation of the fetal lung. Am J Obstet Gynecol. 2001;185(1):173–7.PubMedCrossRefGoogle Scholar
- 60.May M, Marx A, Seidenspinner S, Speer CP. Apoptosis and proliferation in lungs of human fetuses exposed to chorioamnionitis. Histopathology. 2004;45(3):283–90.PubMedCrossRefGoogle Scholar
- 61.Kim MA, Lee YS, Seo K. Assessment of predictive markers for placental inflammatory response in preterm births. PLoS One. 2014;9(10):e107880.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van Meurs KP, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Bersani I, Speer CP. Nosocomial sepsis in neonatal intensive care: inevitable or preventable? Z Geburtshilfe Neonatol. 2012;216(4):186–90.PubMedCrossRefGoogle Scholar
- 64.Boghossian NS, Page GP, Bell EF, Stoll BJ, Murray JC, Cotten CM, et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatr. 2013;162(6):1120–4, 4.e1.Google Scholar
- 65.Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015;100(3):F257–63.PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Ohlin A, Bjorkman L, Serenius F, Schollin J, Kallen K. Sepsis as a risk factor for neonatal morbidity in extremely preterm infants. Acta Paediatr. 2015;104:1070–6.PubMedCrossRefGoogle Scholar
- 67.Auriti C, Maccallini A, Di Liso G, Di Ciommo V, Ronchetti MP, Orzalesi M. Risk factors for nosocomial infections in a neonatal intensive-care unit. J Hosp Infect. 2003;53(1):25–30.PubMedCrossRefGoogle Scholar
- 68.Anderson-Berry A, Brinton B, Lyden E, Faix RG. Risk factors associated with development of persistent coagulase-negative staphylococci bacteremia in the neonate and associated short-term and discharge morbidities. Neonatology. 2011;99(1):23–31.PubMedCrossRefGoogle Scholar
- 69.Strunk T, Doherty D, Jacques A, Simmer K, Richmond P, Kohan R, et al. Histologic chorioamnionitis is associated with reduced risk of late-onset sepsis in preterm infants. Pediatrics. 2012;129(1):e134–41.PubMedCrossRefGoogle Scholar
- 70.Ericson JE, Laughon MM. Chorioamnionitis: implications for the neonate. Clin Perinatol. 2015;42(1):155–65. ix.PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Bersani I, Thomas W, Speer CP. Chorioamnionitis—the good or the evil for neonatal outcome? J Matern Fetal Neonatal Med. 2012;25 Suppl 1:12–6.PubMedCrossRefGoogle Scholar
- 72.Hillman NH, Nitsos I, Berry C, Pillow JJ, Kallapur SG, Jobe AH. Positive end-expiratory pressure and surfactant decrease lung injury during initiation of ventilation in fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011;301(5):L712–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Copland IB, Martinez F, Kavanagh BP, Engelberts D, McKerlie C, Belik J, et al. High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. Am J Respir Crit Care Med. 2004;169(6):739–48.PubMedCrossRefGoogle Scholar
- 74.Backstrom E, Hogmalm A, Lappalainen U, Bry K. Developmental stage is a major determinant of lung injury in a murine model of bronchopulmonary dysplasia. Pediatr Res. 2011;69(4):312–8.PubMedCrossRefGoogle Scholar
- 75.Network SSGotEKSNNR, Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970–9.CrossRefGoogle Scholar
- 76.Roberts CT, Davis PG, Owen LS. Neonatal non-invasive respiratory support: synchronised NIPPV, non-synchronised NIPPV or bi-level CPAP: what is the evidence in 2013? Neonatology. 2013;104(3):203–9.PubMedCrossRefGoogle Scholar
- 77.Laughon M, Allred EN, Bose C, O'Shea TM, Van Marter LJ, Ehrenkranz RA, et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. 2009;123(4):1124–31.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Kroon AA, Wang J, Huang Z, Cao L, Kuliszewski M, Post M. Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume. Pediatr Res. 2010;68(1):63–9.PubMedCrossRefGoogle Scholar
- 79.Ricard JD, Dreyfuss D, Saumon G. Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med. 2001;163(5):1176–80.PubMedCrossRefGoogle Scholar
- 80.Bhandari V. Hyperoxia-derived lung damage in preterm infants. Semin Fetal Neonatal Med. 2010;15(4):223–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 81.Saugstad OD. Oxidative stress in the newborn—a 30-year perspective. Biol Neonate. 2005;88(3):228–36.PubMedCrossRefGoogle Scholar
- 82.Wagenaar GT, ter Horst SA, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, et al. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med. 2004;36(6):782–801.PubMedCrossRefGoogle Scholar
- 83.Vuichard D, Ganter MT, Schimmer RC, Suter D, Booy C, Reyes L, et al. Hypoxia aggravates lipopolysaccharide-induced lung injury. Clin Exp Immunol. 2005;141(2):248–60.PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Urlichs F, Speer CP. Neutrophil function in preterm and term infants. NeoReviews. 2004;5(10):e417–29.CrossRefGoogle Scholar
- 85.Ogden BE, Murphy SA, Saunders GC, Pathak D, Johnson JD. Neonatal lung neutrophils and elastase/proteinase inhibitor imbalance. Am Rev Respir Dis. 1984;130(5):817–21.PubMedGoogle Scholar
- 86.Groneck P, Gotze-Speer B, Oppermann M, Eiffert H, Speer CP. Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics. 1994;93(5):712–8.PubMedGoogle Scholar
- 87.Merritt TA, Stuard ID, Puccia J, Wood B, Edwards DK, Finkelstein J, et al. Newborn tracheal aspirate cytology: classification during respiratory distress syndrome and bronchopulmonary dysplasia. J Pediatr. 1981;98(6):949–56.PubMedCrossRefGoogle Scholar
- 88.Nupponen I, Pesonen E, Andersson S, Makela A, Turunen R, Kautiainen H, et al. Neutrophil activation in preterm infants who have respiratory distress syndrome. Pediatrics. 2002;110(1 Pt 1):36–41.PubMedCrossRefGoogle Scholar
- 89.Jaarsma AS, Braaksma MA, Geven WB, van Oeveren W, Bambang Oetomo S. Activation of the inflammatory reaction within minutes after birth in ventilated preterm lambs with neonatal respiratory distress syndrome. Biol Neonate. 2004;86(1):1–5.PubMedCrossRefGoogle Scholar
- 90.Turunen R, Nupponen I, Siitonen S, Repo H, Andersson S. Onset of mechanical ventilation is associated with rapid activation of circulating phagocytes in preterm infants. Pediatrics. 2006;117(2):448–54.PubMedCrossRefGoogle Scholar
- 91.Wang L, Scabilloni JF, Antonini JM, Rojanasakul Y, Castranova V, Mercer RR. Induction of secondary apoptosis, inflammation, and lung fibrosis after intratracheal instillation of apoptotic cells in rats. Am J Physiol Lung Cell Mol Physiol. 2006;290(4):L695–702.PubMedCrossRefGoogle Scholar
- 92.Murch SH, Costeloe K, Klein NJ, MacDonald TT. Early production of macrophage inflammatory protein-1 alpha occurs in respiratory distress syndrome and is associated with poor outcome. Pediatr Res. 1996;40(3):490–7.PubMedCrossRefGoogle Scholar
- 93.Bhattacharya S, Go D, Krenitsky DL, Huyck HL, Solleti SK, Lunger VA, et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2012;186(4):349–58.PubMedPubMedCentralCrossRefGoogle Scholar
- 94.Rosen D, Lee JH, Cuttitta F, Rafiqi F, Degan S, Sunday ME. Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2006;174(1):75–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 95.Sarelius IH, Glading AJ. Control of vascular permeability by adhesion molecules. Tissue Barriers. 2015;3(1–2):e985954.PubMedPubMedCentralCrossRefGoogle Scholar
- 96.D’Alquen D, Kramer BW, Seidenspinner S, Marx A, Berg D, Groneck P, et al. Activation of umbilical cord endothelial cells and fetal inflammatory response in preterm infants with chorioamnionitis and funisitis. Pediatr Res. 2005;57(2):263–9.PubMedCrossRefGoogle Scholar
- 97.Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE. CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol. 2004;37(2):137–48.PubMedCrossRefGoogle Scholar
- 98.Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 99.Garcia-Ramallo E, Marques T, Prats N, Beleta J, Kunkel SL, Godessart N. Resident cell chemokine expression serves as the major mechanism for leukocyte recruitment during local inflammation. J Immunol. 2002;169(11):6467–73.PubMedCrossRefGoogle Scholar
- 100.Smith RE. Chemotactic cytokines mediate leukocyte recruitment in fibrotic lung disease. Biol Signals. 1996;5(4):223–31.PubMedCrossRefGoogle Scholar
- 101.Yi M, Jankov RP, Belcastro R, Humes D, Copland I, Shek S, et al. Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med. 2004;170(11):1188–96.PubMedCrossRefGoogle Scholar
- 102.Baier RJ, Loggins J, Kruger TE. Monocyte chemoattractant protein-1 and interleukin-8 are increased in bronchopulmonary dysplasia: relation to isolation of Ureaplasma urealyticum. J Invest Med. 2001;49(4):362–9.CrossRefGoogle Scholar
- 103.Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F, et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997;177(4): 825–30.PubMedCrossRefGoogle Scholar
- 104.Bry K, Whitsett JA, Lappalainen U. IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol. 2007;36(1):32–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 105.Hogmalm A, Bry M, Strandvik B, Bry K. IL-1beta expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice. Am J Physiol Lung Cell Mol Physiol. 2014;306(1):L23–34.PubMedCrossRefGoogle Scholar
- 106.Murch SH, Costeloe K, Klein NJ, Rees H, McIntosh N, Keeling JW, et al. Mucosal tumor necrosis factor-alpha production and extensive disruption of sulfated glycosaminoglycans begin within hours of birth in neonatal respiratory distress syndrome. Pediatr Res. 1996;40(3):484–9.PubMedCrossRefGoogle Scholar
- 107.Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107(12):1529–36.PubMedPubMedCentralCrossRefGoogle Scholar
- 108.Blackwell TS, Hipps AN, Yamamoto Y, Han W, Barham WJ, Ostrowski MC, et al. NF-kappaB signaling in fetal lung macrophages disrupts airway morphogenesis. J Immunol. 2011;187(5):2740–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 109.Cao L, Liu C, Cai B, Jia X, Kang L, Speer CP, et al. Nuclear factor-kappa B expression in alveolar macrophages of mechanically ventilated neonates with respiratory distress syndrome. Biol Neonate. 2004;86(2):116–23.PubMedCrossRefGoogle Scholar
- 110.Cheah FC, Winterbourn CC, Darlow BA, Mocatta TJ, Vissers MC. Nuclear factor kappaB activation in pulmonary leukocytes from infants with hyaline membrane disease: associations with chorioamnionitis and Ureaplasma urealyticum colonization. Pediatr Res. 2005;57(5 Pt 1):616–23.PubMedCrossRefGoogle Scholar
- 111.Iosef C, Alastalo TP, Hou Y, Chen C, Adams ES, Lyu SC, et al. Inhibiting NF-kappaB in the developing lung disrupts angiogenesis and alveolarization. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1023–36.PubMedPubMedCentralCrossRefGoogle Scholar
- 112.Jones CA, Cayabyab RG, Kwong KY, Stotts C, Wong B, Hamdan H, et al. Undetectable interleukin (IL)-10 and persistent IL-8 expression early in hyaline membrane disease: a possible developmental basis for the predisposition to chronic lung inflammation in preterm newborns. Pediatr Res. 1996;39(6):966–75.PubMedCrossRefGoogle Scholar
- 113.Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21(5):331–44.PubMedCrossRefGoogle Scholar
- 114.Kwong KY, Jones CA, Cayabyab R, Lecart C, Khuu N, Rhandhawa I, et al. The effects of IL-10 on proinflammatory cytokine expression (IL-1beta and IL-8) in hyaline membrane disease (HMD). Clin Immunol Immunopathol. 1998;88(1):105–13.PubMedCrossRefGoogle Scholar
- 115.Davidson D, Miskolci V, Clark DC, Dolmaian G, Vancurova I. Interleukin-10 production after pro-inflammatory stimulation of neutrophils and monocytic cells of the newborn. Comparison to exogenous interleukin-10 and dexamethasone levels needed to inhibit chemokine release. Neonatology. 2007;92(2):127–33.PubMedCrossRefGoogle Scholar
- 116.Narimanbekov IO, Rozycki HJ. Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res. 1995;21(2):239–54.PubMedCrossRefGoogle Scholar
- 117.Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6): 805–20.PubMedCrossRefGoogle Scholar
- 118.Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819–26.PubMedCrossRefGoogle Scholar
- 119.Akira S. TLR signaling. Curr Top Microbiol Immunol. 2006;311:1–16.PubMedGoogle Scholar
- 120.Glaser K, Speer CP. Toll-like receptor signaling in neonatal sepsis and inflammation: a matter of orchestration and conditioning. Expert Rev Clin Immunol. 2013;9(12):1239–52.PubMedCrossRefGoogle Scholar
- 121.O’Hare FM, William Watson R, Molloy EJ. Toll-like receptors in neonatal sepsis. Acta Paediatr. 2013;102(6):572–8.PubMedCrossRefGoogle Scholar
- 122.Kemp MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol. 2014;5:574.PubMedPubMedCentralCrossRefGoogle Scholar
- 123.Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.PubMedCrossRefGoogle Scholar
- 124.Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12(3):168–79.PubMedPubMedCentralGoogle Scholar
- 125.Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010;2010:240365.PubMedPubMedCentralCrossRefGoogle Scholar
- 126.Jenkins KA, Mansell A. TIR-containing adaptors in Toll-like receptor signalling. Cytokine. 2010;49(3):237–44.PubMedCrossRefGoogle Scholar
- 127.Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2(2):253–8.PubMedCrossRefGoogle Scholar
- 128.Harju K, Glumoff V, Hallman M. Ontogeny of Toll-like receptors Tlr2 and Tlr4 in mice. Pediatr Res. 2001;49(1):81–3.PubMedCrossRefGoogle Scholar
- 129.Hillman NH, Moss TJ, Nitsos I, Kramer BW, Bachurski CJ, Ikegami M, et al. Toll-like receptors and agonist responses in the developing fetal sheep lung. Pediatr Res. 2008;63(4):388–93.PubMedCrossRefGoogle Scholar
- 130.Zhang J, Zhou J, Xu B, Chen C, Shi W. Different expressions of TLRs and related factors in peripheral blood of preterm infants. Int J Clin Exp Med. 2015;8(3):4108–14.PubMedPubMedCentralGoogle Scholar
- 131.Kramer BW, Kramer S, Ikegami M, Jobe AH. Injury, inflammation, and remodeling in fetal sheep lung after intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L452–9.PubMedCrossRefGoogle Scholar
- 132.Harju K, Ojaniemi M, Rounioja S, Glumoff V, Paananen R, Vuolteenaho R, et al. Expression of toll-like receptor 4 and endotoxin responsiveness in mice during perinatal period. Pediatr Res. 2005;57(5 Pt 1):644–8.PubMedCrossRefGoogle Scholar
- 133.Contrino J, Krause PJ, Slover N, Kreutzer D. Elevated interleukin-1 expression in human neonatal neutrophils. Pediatr Res. 1993;34(3):249–52.PubMedCrossRefGoogle Scholar
- 134.Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity. 2012;37(5):771–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem. 1999;274(27): 19403–10.PubMedCrossRefGoogle Scholar
- 136.Nguyen HA, Rajaram MV, Meyer DA, Schlesinger LS. Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages. Am J Physiol Lung Cell Mol Physiol. 2012;303(7):L608–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 137.Wu YZ, Medjane S, Chabot S, Kubrusly FS, Raw I, Chignard M, et al. Surfactant protein-A and phosphatidylglycerol suppress type IIA phospholipase A2 synthesis via nuclear factor-kappaB. Am J Respir Crit Care Med. 2003;168(6):692–9.PubMedCrossRefGoogle Scholar
- 138.Raychaudhuri B, Abraham S, Bonfield TL, Malur A, Deb A, DiDonato JA, et al. Surfactant blocks lipopolysaccharide signaling by inhibiting both mitogen-activated protein and IkappaB kinases in human alveolar macrophages. Am J Respir Cell Mol Biol. 2004;30(2):228–32.PubMedCrossRefGoogle Scholar
- 139.Kerecman J, Mustafa SB, Vasquez MM, Dixon PS, Castro R. Immunosuppressive properties of surfactant in alveolar macrophage NR8383. Inflamm Res. 2008;57(3):118–25.PubMedCrossRefGoogle Scholar
- 140.Bersani I, Kunzmann S, Speer CP. Immunomodulatory properties of surfactant preparations. Expert Rev Anti Infect Ther. 2013;11(1):99–110.PubMedCrossRefGoogle Scholar
- 141.Gerber CE, Bruchelt G, Stegmann H, Schweinsberg F, Speer CP. Presence of bleomycin-detectable free iron in the alveolar system of preterm infants. Biochem Biophys Res Commun. 1999;257(1):218–22.PubMedCrossRefGoogle Scholar
- 142.Speer CP, Ruess D, Harms K, Herting E, Gefeller O. Neutrophil elastase and acute pulmonary damage in neonates with severe respiratory distress syndrome. Pediatrics. 1993;91(4):794–9.PubMedGoogle Scholar
- 143.Altiok O, Yasumatsu R, Bingol-Karakoc G, Riese RJ, Stahlman MT, Dwyer W, et al. Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2006;173(3):318–26.PubMedPubMedCentralCrossRefGoogle Scholar
- 144.Speer CP, Pabst MJ, Hedegaard HB, Rest RF, Johnston Jr RB. Enhanced release of oxygen metabolites by monocyte-derived macrophages exposed to proteolytic enzymes: activity of neutrophil elastase and cathepsin G. J Immunol. 1984;133(4):2151–6.PubMedGoogle Scholar
- 145.Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P, et al. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics. 2001;108(3):686–92.PubMedCrossRefGoogle Scholar
- 146.Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L584–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Lukkarinen H, Hogmalm A, Lappalainen U, Bry K. Matrix metalloproteinase-9 deficiency worsens lung injury in a model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2009;41(1):59–68.PubMedCrossRefGoogle Scholar
- 148.Sampath V, Garland JS, Helbling D, Dimmock D, Mulrooney NP, Simpson PM, et al. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr Res. 2015;77(3):477–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 149.Speer CP. Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol. 2006;26 Suppl 1:S57–62. discussion S3–4.PubMedCrossRefGoogle Scholar
- 150.Adams EW, Harrison MC, Counsell SJ, Allsop JM, Kennea NL, Hajnal JV, et al. Increased lung water and tissue damage in bronchopulmonary dysplasia. J Pediatr. 2004;145(4):503–7.PubMedCrossRefGoogle Scholar
- 151.Kramer BW, Moss TJ, Willet KE, Newnham JP, Sly PD, Kallapur SG, et al. Dose and time response after intraamniotic endotoxin in preterm lambs. Am J Respir Crit Care Med. 2001;164(6):982–8.PubMedCrossRefGoogle Scholar
- 152.Yoder BA, Coalson JJ, Winter VT, Siler-Khodr T, Duffy LB, Cassell GH. Effects of antenatal colonization with ureaplasma urealyticum on pulmonary disease in the immature baboon. Pediatr Res. 2003;54(6):797–807.PubMedCrossRefGoogle Scholar
- 153.Kallapur SG, Jobe AH, Ikegami M, Bachurski CJ. Increased IP-10 and MIG expression after intra-amniotic endotoxin in preterm lamb lung. Am J Respir Crit Care Med. 2003;167(5): 779–86.PubMedCrossRefGoogle Scholar
- 154.Miller JD, Benjamin JT, Kelly DR, Frank DB, Prince LS. Chorioamnionitis stimulates angiogenesis in saccular stage fetal lungs via CC chemokines. Am J Physiol Lung Cell Mol Physiol. 2010;298(5):L637–45.PubMedPubMedCentralCrossRefGoogle Scholar
- 155.Varughese R, Nayak JL, LoMonaco M, O'Reilly MA, Ryan RM, D'Angio CT. Effects of hyperoxia on tumor necrosis factor alpha and Grobeta expression in newborn rabbit lungs. Lung. 2003;181(6):335–46.PubMedCrossRefGoogle Scholar
- 156.Wilson MR, Choudhury S, Takata M. Pulmonary inflammation induced by high-stretch ventilation is mediated by tumor necrosis factor signaling in mice. Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L599–607.PubMedCrossRefGoogle Scholar
- 157.Brew N, Hooper SB, Allison BJ, Wallace MJ, Harding R. Injury and repair in the very immature lung following brief mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2011;301(6):L917–26.PubMedCrossRefGoogle Scholar
- 158.Bartram U, Speer CP. The role of transforming growth factor beta in lung development and disease. Chest. 2004;125(2):754–65.PubMedCrossRefGoogle Scholar
- 159.Kuang PP, Zhang XH, Rich CB, Foster JA, Subramanian M, Goldstein RH. Activation of elastin transcription by transforming growth factor-beta in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L944–52.PubMedCrossRefGoogle Scholar
- 160.Zhao Y, Gilmore BJ, Young SL. Expression of transforming growth factor-beta receptors during hyperoxia-induced lung injury and repair. Am J Physiol. 1997;273(2 Pt 1):L355–62.PubMedGoogle Scholar
- 161.Hines EA, Sun X. Tissue crosstalk in lung development. J Cell Biochem. 2014;115(9): 1469–77.PubMedCrossRefGoogle Scholar
- 162.Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH. Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L1068–78.PubMedCrossRefGoogle Scholar
- 163.Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med. 2006;41(1):4–18.PubMedCrossRefGoogle Scholar
- 164.D'Angio CT, Maniscalco WM. The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci. 2002;7:d1609–23.PubMedCrossRefGoogle Scholar
- 165.Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112(16):2477–86.PubMedCrossRefGoogle Scholar
- 166.Thomas W, Seidenspinner S, Kawczynska-Leda N, Kramer BW, Chmielnicka-Kopaczyk M, Marx A, et al. Systemic fetal inflammation and reduced concentrations of macrophage migration inhibitory factor in tracheobronchial aspirate fluid of extremely premature infants. Am J Obstet Gynecol. 2008;198(1):64.e1–6.CrossRefGoogle Scholar
- 167.Kunzmann S, Seher A, Kramer BW, Schenk R, Schutze N, Jakob F, et al. Connective tissue growth factor does not affect transforming growth factor-beta 1-induced Smad3 phosphorylation and T lymphocyte proliferation inhibition. Int Arch Allergy Immunol. 2008;147(2):152–60.PubMedCrossRefGoogle Scholar
- 168.Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J, et al. High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2002;165(10):1384–7.PubMedCrossRefGoogle Scholar
- 169.Lassus P, Heikkila P, Andersson LC, von Boguslawski K, Andersson S. Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr. 2003;143(2):199–202.PubMedCrossRefGoogle Scholar
- 170.Huusko JM, Karjalainen MK, Mahlman M, Haataja R, Kari MA, Andersson S, et al. A study of genes encoding cytokines (IL6, IL10, TNF), cytokine receptors (IL6R, IL6ST), and glucocorticoid receptor (NR3C1) and susceptibility to bronchopulmonary dysplasia. BMC Med Genet. 2014;15:120.PubMedPubMedCentralCrossRefGoogle Scholar
- 171.Genc MR, Onderdonk A. Endogenous bacterial flora in pregnant women and the influence of maternal genetic variation. BJOG. 2011;118(2):154–63.PubMedCrossRefGoogle Scholar
- 172.Strassberg SS, Cristea IA, Qian D, Parton LA. Single nucleotide polymorphisms of tumor necrosis factor-alpha and the susceptibility to bronchopulmonary dysplasia. Pediatr Pulmonol. 2007;42(1):29–36.PubMedCrossRefGoogle Scholar
- 173.Miller TL, Shashikant BN, Pilon AL, Pierce RA, Shaffer TH, Wolfson MR. Effects of an intratracheally delivered anti-inflammatory protein (rhCC10) on physiological and lung structural indices in a juvenile model of acute lung injury. Biol Neonate. 2006;89(3): 159–70.PubMedCrossRefGoogle Scholar
- 174.Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5): 966–72.e6.PubMedCrossRefGoogle Scholar
- 175.O’Reilly M, Thebaud B. Stem cells for the prevention of neonatal lung disease. Neonatology. 2015;107(4):360–4.PubMedCrossRefGoogle Scholar
- 176.Pawelec K, Gladysz D, Demkow U, Boruczkowski D. Stem cell experiments moves into clinic: new hope for children with bronchopulmonary dysplasia. Adv Exp Med Biol. 2015;839:47–53.PubMedCrossRefGoogle Scholar