Invasive Mechanical Ventilation in the Pathogenesis of Bronchopulmonary Dysplasia

  • Lauren M. Ramos
  • Tanbir Najrana
  • Juan Sanchez-EstebanEmail author
Part of the Respiratory Medicine book series (RM)


Invasive mechanical ventilation is often necessary for preterm infants born with underdeveloped lungs. However, invasive mechanical ventilation can induce lung injury and cause bronchopulmonary dysplasia (BPD). BPD is a chronic lung disease characterized by alveolar hypoplasia and impaired pulmonary vascular development. Although the pathogenesis of BPD is multifactorial, injury caused by invasive mechanical ventilation plays a significant role. Overdistension of the lung can damage lung resident cells and disrupt the alveolar–capillary barrier with subsequent release of proinflammatory cytokines, increase in permeability, and influx of neutrophils and macrophages to the lung. In addition to inducing an inflammatory response, invasive mechanical ventilation can also have a negative impact on important signaling pathways regulating alveolar development, such as secondary septation, cell proliferation, differentiation, apoptosis, and vasculogenesis. The final result is alveolar simplification and abnormal vascular development observed in patients with BPD.


Lung injury Mechanical injury Mechanical ventilation Bronchopulmonary dysplasia Ventilator-induced lung injury 


  1. 1.
    Trembath A, Laughon MM. Predictors of bronchopulmonary dysplasia. Clin Perinatol. 2012;39(3):585–601.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Skidmore MD, Rivers A, Hack M. Increased risk of cerebral palsy among very low-birthweight infants with chronic lung disease. Dev Med Child Neurol. 1990;32(4):325–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhandari A, Bhandari V. Biomarkers in bronchopulmonary dysplasia. Paediatr Respir Rev. 2013;14(3):173–9.PubMedGoogle Scholar
  5. 5.
    Jobe AH, Ikegami M. Mechanisms initiating lung injury in the preterm. Early Hum Dev. 1998;53(1):81–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoder BA. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr. 2001;139(4):478–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157(1):294–323.PubMedCrossRefGoogle Scholar
  8. 8.
    Speer CP. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med. 2006;11(5):354–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Kramer BW, Kallapur S, Newnham J, Jobe AH. Prenatal inflammation and lung development. Semin Fetal Neonatal Med. 2009;14(1):2–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science. 1990;250(4985):1266–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Sanchez-Esteban J, Cicchiello LA, Wang Y, et al. Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol. 2001;91(2):589–95.PubMedGoogle Scholar
  12. 12.
    Edwards YS, Sutherland LM, Power JH, Nicholas TE, Murray AW. Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Lett. 1999;448(1):127–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Hammerschmidt S, Kuhn H, Grasenack T, Gessner C, Wirtz H. Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells. Am J Respir Cell Mol Biol. 2004;30(3):396–402.PubMedCrossRefGoogle Scholar
  14. 14.
    Vlahakis NE, Hubmayr RD. Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol. 2000;89(6):2490–6. discussion 2497.PubMedGoogle Scholar
  15. 15.
    Tschumperlin DJ, Oswari J, Margulies AS. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med. 2000;162(2 Pt 1):357–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol. 1999;277(1 Pt 1):L167–73.PubMedGoogle Scholar
  17. 17.
    Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology. 2002;7(2):103–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hammerschmidt S, Kuhn H, Sack U, et al. Mechanical stretch alters alveolar type II cell mediator release toward a proinflammatory pattern. Am J Respir Cell Mol Biol. 2005;33(2):203–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee HS, Wang Y, Maciejewski BS, et al. Interleukin-10 protects cultured fetal rat type II epithelial cells from injury induced by mechanical stretch. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L225–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Thorley AJ, Ford PA, Giembycz MA, Goldstraw P, Young A, Tetley TD. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J Immunol. 2007;178(1):463–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Rozycki HJ. Potential contribution of type I alveolar epithelial cells to chronic neonatal lung disease. Front Pediatr. 2014;2:45.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wong MH, Chapin OC, Johnson MD. LPS-stimulated cytokine production in type I cells is modulated by the renin-angiotensin system. Am J Respir Cell Mol Biol. 2012;46(5): 641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wong MH, Johnson MD. Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One. 2013;8(1):e55545.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286(6):C1213–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Dipaolo BC, Davidovich N, Kazanietz MG, Margulies SS. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013;305(2):L141–53.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McGowan SE, Torday JS. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu Rev Physiol. 1997;59:43–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Gahler A, Stallmach T, Schwaller J, Fey MF, Tobler A. Interleukin-8 expression by fetal and neonatal pulmonary cells in hyaline membrane disease and amniotic infection. Pediatr Res. 2000;48(3):299–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Hawwa RL, Hokenson MA, Wang Y, Huang Z, Sharma S, Sanchez-Esteban J. IL-10 inhibits inflammatory cytokines released by fetal mouse lung fibroblasts exposed to mechanical stretch. Pediatr Pulmonol. 2011;46(7):640–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(6):894–901.PubMedCrossRefGoogle Scholar
  30. 30.
    Birukov KG, Jacobson JR, Flores AA, et al. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol. 2003;285(4):L785–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Pugin J, Dunn I, Jolliet P, et al. Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol. 1998;275(6 Pt 1):L1040–50.PubMedGoogle Scholar
  32. 32.
    Jaarsma AS, Braaksma MA, Geven WB, van Oeveren W, Bambang Oetomo S. Activation of the inflammatory reaction within minutes after birth in ventilated preterm lambs with neonatal respiratory distress syndrome. Biol Neonate. 2004;86(1):1–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Omlor G, Niehaus GD, Maron MB. Effect of peak inspiratory pressure on the filtration coefficient in the isolated perfused rat lung. J Appl Physiol (1985). 1993;74(6):3068–72.Google Scholar
  34. 34.
    Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137(5):1159–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramanathan R, Mason GR, Raj JU. Effect of mechanical ventilation and barotrauma on pulmonary clearance of 99mtechnetium diethylenetriamine pentaacetate in lambs. Pediatr Res. 1990;27(1):70–4.PubMedCrossRefGoogle Scholar
  36. 36.
    John E, McDevitt M, Wilborn W, Cassady G. Ultrastructure of the lung after ventilation. Br J Exp Pathol. 1982;63(4):401–7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132(4):880–4.PubMedGoogle Scholar
  38. 38.
    Speer CP. Inflammation and bronchopulmonary dysplasia. Semin Neonatol. 2003;8(1):29–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99(5):944–52.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Albertine KH, Jones GP, Starcher BC, et al. Chronic lung injury in preterm lambs. Disordered respiratory tract development. Am J Respir Crit Care Med. 1999;159(3):945–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Jackson JC, Chi EY, Wilson CB, Truog WE, Teh EC, Hodson WA. Sequence of inflammatory cell migration into lung during recovery from hyaline membrane disease in premature newborn monkeys. Am Rev Respir Dis. 1987;135(4):937–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Woo SW, Hedley-Whyte J. Macrophage accumulation and pulmonary edema due to thoracotomy and lung over inflation. J Appl Physiol. 1972;33(1):14–21.PubMedGoogle Scholar
  43. 43.
    Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991;143(5 Pt 1):1115–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Merritt TA, Stuard ID, Puccia J, et al. Newborn tracheal aspirate cytology: classification during respiratory distress syndrome and bronchopulmonary dysplasia. J Pediatr. 1981;98(6):949–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Groneck P, Gotze-Speer B, Oppermann M, Eiffert H, Speer CP. Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics. 1994;93(5):712–8.PubMedGoogle Scholar
  46. 46.
    Munshi UK, Niu JO, Siddiq MM, Parton LA. Elevation of interleukin-8 and interleukin-6 precedes the influx of neutrophils in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatr Pulmonol. 1997;24(5):331–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149(5):1327–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Hillman NH, Polglase GR, Pillow JJ, Saito M, Kallapur SG, Jobe AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011;300(2):L232–41.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med. 1999;160(4):1333–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Wu S, Capasso L, Lessa A, et al. High tidal volume ventilation activates Smad2 and upregulates expression of connective tissue growth factor in newborn rat lung. Pediatr Res. 2008;63(3):245–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Kroon AA, Wang J, Huang Z, Cao L, Kuliszewski M, Post M. Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume. Pediatr Res. 2010;68(1):63–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Jones CA, Cayabyab RG, Kwong KY, et al. Undetectable interleukin (IL)-10 and persistent IL-8 expression early in hyaline membrane disease: a possible developmental basis for the predisposition to chronic lung inflammation in preterm newborns. Pediatr Res. 1996;39(6):966–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Bland RD. Neonatal chronic lung disease in the post-surfactant era. Biol Neonate. 2005;88(3):181–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Bartram U, Speer CP. The role of transforming growth factor beta in lung development and disease. Chest. 2004;125(2):754–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Sime PJ, Marr RA, Gauldie D, et al. Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol. 1998;153(3):825–32.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100(4):768–76.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr. 1996;128(4):464–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Lecart C, Cayabyab R, Buckley S, et al. Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation. Biol Neonate. 2000;77(4):217–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Schumacker PT. Straining to understand mechanotransduction in the lung. Am J Physiol Lung Cell Mol Physiol. 2002;282(5):L881–2.PubMedCrossRefGoogle Scholar
  60. 60.
    Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol (1985). 2000;89(4):1645–55.Google Scholar
  61. 61.
    Bjorklund LJ, Ingimarsson J, Curstedt T, et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997;42(3):348–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Wada K, Jobe AH, Ikegami M. Tidal volume effects on surfactant treatment responses with the initiation of ventilation in preterm lambs. J Appl Physiol (1985). 1997;83(4):1054–61.Google Scholar
  63. 63.
    Michna J, Jobe AH, Ikegami M. Positive end-expiratory pressure preserves surfactant function in preterm lambs. Am J Respir Crit Care Med. 1999;160(2):634–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Dreyfuss D, Saumon G. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis. 1993;148(5):1194–203.PubMedCrossRefGoogle Scholar
  65. 65.
    Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28(5):596–608.PubMedGoogle Scholar
  66. 66.
    Vlahakis NE, Hubmayr RD. Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med. 2005;171(12):1328–42.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280(5):L938–46.PubMedGoogle Scholar
  68. 68.
    Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Role of deformation-induced lipid trafficking in the prevention of plasma membrane stress failure. Am J Respir Crit Care Med. 2002;166(9):1282–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Fisher JL, Levitan I, Margulies SS. Plasma membrane surface increases with tonic stretch of alveolar epithelial cells. Am J Respir Cell Mol Biol. 2004;31(2):200–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Gajic O, Lee J, Doerr CH, Berrios JC, Myers JL, Hubmayr RD. Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med. 2003;167(8):1057–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Bloom M, Evans E, Mouritsen OG. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991;24(3):293–397.PubMedCrossRefGoogle Scholar
  72. 72.
    Tschumperlin DJ, Margulies SS. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am J Physiol. 1998;275(6 Pt 1):L1173–83.PubMedGoogle Scholar
  73. 73.
    Benz R, Zimmermann U. The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta. 1981;640(1):169–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Lipowsky R. The conformation of membranes. Nature. 1991;349(6309):475–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Togo T, Krasieva TB, Steinhardt RA. A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell. 2000;11(12):4339–46.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Terasaki M, Miyake K, McNeil PL. Large plasma membrane disruptions are rapidly resealed by Ca2+−dependent vesicle-vesicle fusion events. J Cell Biol. 1997;139(1):63–74.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    McNeil PL, Vogel SS, Miyake K, Terasaki M. Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci. 2000;113(Pt 11):1891–902.PubMedGoogle Scholar
  78. 78.
    Bi GQ, Alderton JM, Steinhardt RA. Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol. 1995;131(6 Pt 2):1747–58.PubMedCrossRefGoogle Scholar
  79. 79.
    DiPaolo BC, Lenormand G, Fredberg JJ, Margulies SS. Stretch magnitude and frequency-dependent actin cytoskeleton remodeling in alveolar epithelia. Am J Physiol Cell Physiol. 2010;299(2):C345–53.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol. 1995;163(3):510–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Goeckeler ZM, Wysolmerski RB. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 1995;130(3):613–27.PubMedCrossRefGoogle Scholar
  82. 82.
    Hochberg I, Abassi Z, Azzam ZS. Patterns of alveolar fluid clearance in heart failure. Int J Cardiol. 2008;130(2):125–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Goodman BE, Fleischer RS, Crandall ED. Evidence for active Na+ transport by cultured monolayers of pulmonary alveolar epithelial cells. Am J Physiol. 1983;245(1):C78–83.PubMedGoogle Scholar
  84. 84.
    Basset G, Bouchonnet F, Crone C, Saumon G. Potassium transport across rat alveolar epithelium: evidence for an apical Na+-K+ pump. J Physiol. 1988;400:529–43.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Matalon S, Benos DJ, Jackson RM. Biophysical and molecular properties of amiloride-inhibitable Na+ channels in alveolar epithelial cells. Am J Physiol. 1996;271(1 Pt 1):L1–22.PubMedGoogle Scholar
  86. 86.
    Sznajder JI, Olivera WG, Ridge KM, Rutschman DH. Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs. Am J Respir Crit Care Med. 1995;151(5):1519–25.PubMedCrossRefGoogle Scholar
  87. 87.
    Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165(2):242–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Lecuona E, Saldias F, Comellas A, Ridge K, Guerrero C, Sznajder JI. Ventilator-associated lung injury decreases lung ability to clear edema in rats. Am J Respir Crit Care Med. 1999;159(2):603–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol. 2002;282(5):L892–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110(5):556–65.PubMedGoogle Scholar
  91. 91.
    Sanchez-Esteban J, Wang Y, Cicchiello LA, Rubin LP. Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L448–56.PubMedCrossRefGoogle Scholar
  92. 92.
    West JB. Invited review: pulmonary capillary stress failure. J Appl Physiol (1985). 2000;89(6):2483–9. discussion 2497.Google Scholar
  93. 93.
    Haitsma JJ, Uhlig S, Goggel R, Verbrugge SJ, Lachmann U, Lachmann B. Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med. 2000;26(10):1515–22.PubMedCrossRefGoogle Scholar
  94. 94.
    Murphy DB, Cregg N, Tremblay L, et al. Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med. 2000;162(1):27–33.PubMedCrossRefGoogle Scholar
  95. 95.
    Verbrugge SJ, Sorm V, van ‘t Veen A, Mouton JW, Gommers D, Lachmann B. Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation. Intensive Care Med. 1998;24(2):172–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Dreyfuss D, Soler P, Saumon G. Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med. 1995;151(5): 1568–75.PubMedCrossRefGoogle Scholar
  97. 97.
    dos Santos CC, Slutsky AS. The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol. 2006;68:585–618.PubMedCrossRefGoogle Scholar
  98. 98.
    Neal CR, Michel CC. Transcellular openings through frog microvascular endothelium. Exp Physiol. 1997;82(2):419–22.PubMedCrossRefGoogle Scholar
  99. 99.
    Michel CC, Neal CR. Openings through endothelial cells associated with increased microvascular permeability. Microcirculation. 1999;6(1):45–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Elliott AR, Fu Z, Tsukimoto K, Prediletto R, Mathieu-Costello O, West JB. Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol (1985). 1992;73(3):1150–8.Google Scholar
  101. 101.
    Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol. 1997;504(Pt 3):747–61.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82.PubMedCrossRefGoogle Scholar
  103. 103.
    Wajant H, Muhlenbeck F, Scheurich P. Identification of a TRAF (TNF receptor-associated factor) gene in Caenorhabditis elegans. J Mol Evol. 1998;47(6):656–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Huang Z, Wang Y, Nayak PS, Dammann CE, Sanchez-Esteban J. Stretch-induced fetal type II cell differentiation is mediated via ErbB1-ErbB4 interactions. J Biol Chem. 2012;287(22):18091–102.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bierman A, Yerrapureddy A, Reddy NM, Hassoun PM, Reddy SP. Epidermal growth factor receptor (EGFR) regulates mechanical ventilation-induced lung injury in mice. Transl Res. 2008;152(6):265–72.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Spieth PM, Bluth T, Gama De Abreu M, Bacelis A, Goetz AE, Kiefmann R. Mechanotransduction in the lungs. Minerva Anestesiol. 2014;80(8):933–41.PubMedGoogle Scholar
  107. 107.
    Han B, Lodyga M, Liu M. Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc. 2005;2(3):181–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Fredberg JJ, Kamm RD. Stress transmission in the lung: pathways from organ to molecule. Annu Rev Physiol. 2006;68:507–41.PubMedCrossRefGoogle Scholar
  109. 109.
    Parker JC, Ivey CL, Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol (1985). 1998;84(4):1113–8.Google Scholar
  110. 110.
    Waters CM, Ridge KM, Sunio G, Venetsanou K, Sznajder JI. Mechanical stretching of alveolar epithelial cells increases Na(+)-K(+)-ATPase activity. J Appl Physiol (1985). 1999;87(2): 715–21.Google Scholar
  111. 111.
    Boitano S, Sanderson MJ, Dirksen ER. A role for Ca(2+)-conducting ion channels in mechanically-induced signal transduction of airway epithelial cells. J Cell Sci. 1994;107(Pt 11):3037–44.PubMedGoogle Scholar
  112. 112.
    Yin J, Kuebler WM. Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys. 2010;56(1):1–18.PubMedCrossRefGoogle Scholar
  113. 113.
    Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res. 2006;99(9):988–95.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Stevens T. Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thorac Soc. 2011;8(6):453–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Herold S, Gabrielli NM, Vadasz I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L665–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Cioffi DL, Lowe K, Alvarez DF, Barry C, Stevens T. TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal. 2009;11(4):765–76.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sidhaye VK, Schweitzer KS, Caterina MJ, Shimoda L, King LS. Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc Natl Acad Sci USA. 2008;105(9): 3345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Balakrishna S, Song W, Achanta S, et al. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;307(2):L158–72.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Nayak PS, Wang Y, Najrana T, et al. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir Res. 2015;16:60.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Pugin J. Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit Care Med. 2003;31(4 Suppl):S200–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6): 673–87.PubMedCrossRefGoogle Scholar
  122. 122.
    Zamir E, Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci. 2001;114(Pt 20):3583–90.PubMedGoogle Scholar
  123. 123.
    Ilic D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci. 1997;110(Pt 4):401–7.PubMedGoogle Scholar
  124. 124.
    Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem Biophys Res Commun. 1999;259(1):8–14.PubMedCrossRefGoogle Scholar
  125. 125.
    Aikawa R, Komuro I, Yamazaki T, et al. Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res. 1999;84(4):458–66.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K. Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun. 2001;288(2):356–61.PubMedCrossRefGoogle Scholar
  127. 127.
    Wang Y, Huang Z, Nayak PS, et al. Strain-induced differentiation of fetal type II epithelial cells is mediated via the integrin alpha6beta1-ADAM17/tumor necrosis factor-alpha-converting enzyme (TACE) signaling pathway. J Biol Chem. 2013;288(35):25646–57.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Shafrir Y, Forgacs G. Mechanotransduction through the cytoskeleton. Am J Physiol Cell Physiol. 2002;282(3):C479–86.PubMedCrossRefGoogle Scholar
  129. 129.
    Gillespie PG, Walker RG. Molecular basis of mechanosensory transduction. Nature. 2001;413(6852):194–202.PubMedCrossRefGoogle Scholar
  130. 130.
    Chen KD, Li YS, Kim M, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem. 1999;274(26):18393–400.PubMedCrossRefGoogle Scholar
  131. 131.
    Hu Y, Bock G, Wick G, Xu Q. Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. FASEB J. 1998;12(12):1135–42.PubMedGoogle Scholar
  132. 132.
    Liu M, Liu J, Buch S, Tanswell AK, Post M. Antisense oligonucleotides for PDGF-B and its receptor inhibit mechanical strain-induced fetal lung cell growth. Am J Physiol. 1995;269(2 Pt 1):L178–84.PubMedGoogle Scholar
  133. 133.
    Tschumperlin DJ, Dai G, Maly IV, et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature. 2004;429(6987):83–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Wang Y, Maciejewski BS, Soto-Reyes D, Lee HS, Warburton D, Sanchez-Esteban J. Mechanical stretch promotes fetal type II epithelial cell differentiation via shedding of HB-EGF and TGF-alpha. J Physiol. 2009;587(Pt 8):1739–53.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ko KS, Arora PD, McCulloch CA. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem. 2001;276(38):35967–77.PubMedCrossRefGoogle Scholar
  136. 136.
    Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824): 37–40.PubMedCrossRefGoogle Scholar
  137. 137.
    Oudin S, Pugin J. Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch. Am J Respir Cell Mol Biol. 2002;27(1):107–14.PubMedCrossRefGoogle Scholar
  138. 138.
    Correa-Meyer E, Pesce L, Guerrero C, Sznajder JI. Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282(5):L883–91.PubMedCrossRefGoogle Scholar
  139. 139.
    Quinn D, Tager A, Joseph PM, Bonventre JV, Force T, Hales CA. Stretch-induced mitogen-activated protein kinase activation and interleukin-8 production in type II alveolar cells. Chest. 1999;116(1 Suppl):89S–90.PubMedCrossRefGoogle Scholar
  140. 140.
    Sanchez-Esteban J, Wang Y, Gruppuso PA, Rubin LP. Mechanical stretch induces fetal type II cell differentiation via an epidermal growth factor receptor-extracellular-regulated protein kinase signaling pathway. Am J Respir Cell Mol Biol. 2004;30(1):76–83.PubMedCrossRefGoogle Scholar
  141. 141.
    Uhlig U, Haitsma JJ, Goldmann T, Poelma DL, Lachmann B, Uhlig S. Ventilation-induced activation of the mitogen-activated protein kinase pathway. Eur Respir J. 2002;20(4): 946–56.PubMedCrossRefGoogle Scholar
  142. 142.
    Russo LA, Rannels SR, Laslow KS, Rannels DE. Stretch-related changes in lung cAMP after partial pneumonectomy. Am J Physiol. 1989;257(2 Pt 1):E261–8.PubMedGoogle Scholar
  143. 143.
    Wang Y, Maciejewski BS, Lee N, et al. Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L820–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Ko K, Arora P, Lee W, McCulloch C. Biochemical and functional characterization of intercellular adhesion and gap junctions in fibroblasts. Am J Physiol Cell Physiol. 2000;279(1):C147–57.PubMedGoogle Scholar
  145. 145.
    Sanderson MJ, Charles AC, Dirksen ER. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1990;1(8):585–96.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Hansen M, Boitano S, Dirksen ER, Sanderson MJ. Intercellular calcium signaling induced by extracellular adenosine 5′-triphosphate and mechanical stimulation in airway epithelial cells. J Cell Sci. 1993;106(Pt 4):995–1004.PubMedGoogle Scholar
  147. 147.
    Boitano S, Dirksen ER, Evans WH. Sequence-specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium. 1998;23(1):1–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol. 1997;17(1):3–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Lentsch AB, Czermak BJ, Bless NM, Van Rooijen N, Ward PA. Essential role of alveolar macrophages in intrapulmonary activation of NF-kappaB. Am J Respir Cell Mol Biol. 1999;20(4):692–8.PubMedCrossRefGoogle Scholar
  150. 150.
    McRitchie DI, Isowa N, Edelson JD, et al. Production of tumour necrosis factor alpha by primary cultured rat alveolar epithelial cells. Cytokine. 2000;12(6):644–54.PubMedCrossRefGoogle Scholar
  151. 151.
    Schwartz MD, Moore EE, Moore FA, et al. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med. 1996;24(8):1285–92.PubMedCrossRefGoogle Scholar
  152. 152.
    Cheah FC, Winterbourn CC, Darlow BA, Mocatta TJ, Vissers MC. Nuclear factor kappaB activation in pulmonary leukocytes from infants with hyaline membrane disease: associations with chorioamnionitis and Ureaplasma urealyticum colonization. Pediatr Res. 2005;57(5 Pt 1):616–23.PubMedCrossRefGoogle Scholar
  153. 153.
    Bourbia A, Cruz MA, Rozycki HJ. NF-kappaB in tracheal lavage fluid from intubated premature infants: association with inflammation, oxygen, and outcome. Arch Dis Child Fetal Neonatal Ed. 2006;91(1):F36–9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Copland IB, Martinez F, Kavanagh BP, et al. High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. Am J Respir Crit Care Med. 2004;169(6):739–48.PubMedCrossRefGoogle Scholar
  155. 155.
    Dolinay T, Kaminski N, Felgendreher M, et al. Gene expression profiling of target genes in ventilator-induced lung injury. Physiol Genomics. 2006;26(1):68–75.PubMedCrossRefGoogle Scholar
  156. 156.
    Siegl S, Uhlig S. Using the one-lung method to link p38 to pro-inflammatory gene expression during overventilation in C57BL/6 and BALB/c mice. PLoS One. 2012;7(7):e41464.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gharib SA, Liles WC, Klaff LS, Altemeier WA. Noninjurious mechanical ventilation activates a proinflammatory transcriptional program in the lung. Physiol Genomics. 2009;37(3):239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kompass KS, Deslee G, Moore C, McCurnin D, Pierce RA. Highly conserved transcriptional responses to mechanical ventilation of the lung. Physiol Genomics. 2010;42(3):384–96.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8–23.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Bourbon J, Boucherat O, Chailley-Heu B, Delacourt C. Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res. 2005;57(5 Pt 2):38R–46.PubMedCrossRefGoogle Scholar
  161. 161.
    Bourbon JR, Boucherat O, Boczkowski J, Crestani B, Delacourt C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med. 2009;15(4):169–79.PubMedCrossRefGoogle Scholar
  162. 162.
    Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY. Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol. 2000;23(3):320–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Bostrom H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell. 1996;85(6):863–73.PubMedCrossRefGoogle Scholar
  164. 164.
    Lindahl P, Karlsson L, Hellstrom M, et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development. 1997;124(20):3943–53.PubMedGoogle Scholar
  165. 165.
    Liebeskind A, Srinivasan S, Kaetzel D, Bruce M. Retinoic acid stimulates immature lung fibroblast growth via a PDGF-mediated autocrine mechanism. Am J Physiol Lung Cell Mol Physiol. 2000;279(1):L81–90.PubMedGoogle Scholar
  166. 166.
    Liu B, Harvey CS, McGowan SE. Retinoic acid increases elastin in neonatal rat lung fibroblast cultures. Am J Physiol. 1993;265(5 Pt 1):L430–7.PubMedGoogle Scholar
  167. 167.
    Massaro GD, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol. 1996;270(2 Pt 1):L305–10.PubMedGoogle Scholar
  168. 168.
    Hadchouel A, Franco-Montoya ML, Delacourt C. Altered lung development in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):158–67.PubMedCrossRefGoogle Scholar
  169. 169.
    Weinstein M, Xu X, Ohyama K, Deng CX. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development. 1998;125(18):3615–23.PubMedGoogle Scholar
  170. 170.
    Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR. FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L43–51.PubMedCrossRefGoogle Scholar
  171. 171.
    Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Thibeault DW, Mabry SM, Ekekezie II, Truog WE. Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics. 2000;106(6):1452–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Margraf LR, Tomashefski Jr JF, Bruce MC, Dahms BB. Morphometric analysis of the lung in bronchopulmonary dysplasia. Am Rev Respir Dis. 1991;143(2):391–400.PubMedCrossRefGoogle Scholar
  174. 174.
    Merritt TA. Oxygen exposure in the newborn guinea pig lung lavage cell populations, chemotactic and elastase response: a possible relationship to neonatal bronchopulmonary dysplasia. Pediatr Res. 1982;16(9):798–805.PubMedCrossRefGoogle Scholar
  175. 175.
    Merritt TA, Cochrane CG, Holcomb K, et al. Elastase and alpha 1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. Role of inflammation in the pathogenesis of bronchopulmonary dysplasia. J Clin Invest. 1983;72(2):656–66.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, Bland RD. Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol. 1997;272(3 Pt 1):L452–60.PubMedGoogle Scholar
  177. 177.
    Mokres LM, Parai K, Hilgendorff A, et al. Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol. 2010;298(1):L23–35.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Alnahhas MH, Karathanasis P, Kriss VM, Pauly TH, Bruce MC. Elevated laminin concentrations in lung secretions of preterm infants supported by mechanical ventilation are correlated with radiographic abnormalities. J Pediatr. 1997;131(4):555–60.PubMedCrossRefGoogle Scholar
  179. 179.
    Murch SH, MacDonald TT, Walker-Smith JA, Levin M, Lionetti P, Klein NJ. Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet. 1993;341(8847):711–4.PubMedCrossRefGoogle Scholar
  180. 180.
    Bland RD, Ertsey R, Mokres LM, et al. Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L3–14.PubMedCrossRefGoogle Scholar
  181. 181.
    Bland RD, Mokres LM, Ertsey R, et al. Mechanical ventilation with 40% oxygen reduces pulmonary expression of genes that regulate lung development and impairs alveolar septation in newborn mice. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1099–110.PubMedCrossRefGoogle Scholar
  182. 182.
    Thibeault DW, Mabry SM, Ekekezie II, Zhang X, Truog WE. Collagen scaffolding during development and its deformation with chronic lung disease. Pediatrics. 2003;111(4 Pt 1): 766–76.PubMedCrossRefGoogle Scholar
  183. 183.
    Masumoto K, de Rooij JD, Suita S, Rottier R, Tibboel D, de Krijger RR. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases during normal human pulmonary development. Histopathology. 2005;47(4):410–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Schulz CG, Sawicki G, Lemke RP, Roeten BM, Schulz R, Cheung PY. MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res. 2004;55(5):794–801.PubMedCrossRefGoogle Scholar
  185. 185.
    Kheradmand F, Rishi K, Werb Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci. 2002;115(Pt 4):839–48.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Cederqvist K, Sorsa T, Tervahartiala T, et al. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics. 2001;108(3):686–92.PubMedCrossRefGoogle Scholar
  187. 187.
    Altiok O, Yasumatsu R, Bingol-Karakoc G, et al. Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2006;173(3):318–26.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Yasumatsu R, Altiok O, Benarafa C, et al. SERPINB1 upregulation is associated with in vivo complex formation with neutrophil elastase and cathepsin G in a baboon model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L619–27.PubMedCrossRefGoogle Scholar
  189. 189.
    Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res. 2006;98(2):209–17.PubMedCrossRefGoogle Scholar
  190. 190.
    Colarossi C, Chen Y, Obata H, et al. Lung alveolar septation defects in Ltbp-3-null mice. Am J Pathol. 2005;167(2):419–28.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Vicencio AG, Lee CG, Cho SJ, et al. Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia? Am J Respir Cell Mol Biol. 2004;31(6):650–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Gauldie J, Galt T, Bonniaud P, Robbins C, Kelly M, Warburton D. Transfer of the active form of transforming growth factor-beta 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol. 2003;163(6):2575–84.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Bland RD, Xu L, Ertsey R, et al. Dysregulation of pulmonary elastin synthesis and assembly in preterm lambs with chronic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1370–84.PubMedCrossRefGoogle Scholar
  194. 194.
    Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Roberts Jr JD. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L151–61.PubMedCrossRefGoogle Scholar
  195. 195.
    Zhao Y, Gilmore BJ, Young SL. Expression of transforming growth factor-beta receptors during hyperoxia-induced lung injury and repair. Am J Physiol. 1997;273(2 Pt 1):L355–62.PubMedGoogle Scholar
  196. 196.
    Wan H, Xu Y, Ikegami M, et al. Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci USA. 2004;101(40):14449–54.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Wan H, Kaestner KH, Ang SL, et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 2004;131(4):953–64.PubMedCrossRefGoogle Scholar
  198. 198.
    Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol. 2003;256(1):61–72.PubMedCrossRefGoogle Scholar
  199. 199.
    Chelly N, Mouhieddine-Gueddiche OB, Barlier-Mur AM, Chailley-Heu B, Bourbon JR. Keratinocyte growth factor enhances maturation of fetal rat lung type II cells. Am J Respir Cell Mol Biol. 1999;20(3):423–32.PubMedCrossRefGoogle Scholar
  200. 200.
    Welsh DA, Summer WR, Dobard EP, Nelson S, Mason CM. Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1081–6.PubMedCrossRefGoogle Scholar
  201. 201.
    Epaud R, Aubey F, Xu J, et al. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis. PLoS One. 2012;7(11):e48071.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Das KC, Ravi D. Altered expression of cyclins and cdks in premature infant baboon model of bronchopulmonary dysplasia. Antioxid Redox Signal. 2004;6(1):117–27.PubMedCrossRefGoogle Scholar
  203. 203.
    Kroon AA, Wang J, Kavanagh BP, et al. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung. PLoS One. 2011;6(2):e16910.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Giordani VM, DeBenedictus CM, Wang Y, Sanchez-Esteban J. Epidermal growth factor receptor (EGFR) contributes to fetal lung fibroblast injury induced by mechanical stretch. J Recept Signal Transduct Res. 2014;34(1):58–63.PubMedCrossRefGoogle Scholar
  205. 205.
    Scavo LM, Ertsey R, Chapin CJ, Allen L, Kitterman JA. Apoptosis in the development of rat and human fetal lungs. Am J Respir Cell Mol Biol. 1998;18(1):21–31.PubMedCrossRefGoogle Scholar
  206. 206.
    Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–61.PubMedCrossRefGoogle Scholar
  207. 207.
    Jakkula M, Le Cras TD, Gebb S, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L600–7.PubMedGoogle Scholar
  208. 208.
    Vadivel A, Alphonse RS, Etches N, et al. Hypoxia-inducible factors promote alveolar development and regeneration. Am J Respir Cell Mol Biol. 2014;50(1):96–105.PubMedGoogle Scholar
  209. 209.
    Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L555–62.PubMedCrossRefGoogle Scholar
  210. 210.
    Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.PubMedCrossRefGoogle Scholar
  211. 211.
    Thibeault DW, Mabry SM, Norberg M, Truog WE, Ekekezie II. Lung microvascular adaptation in infants with chronic lung disease. Biol Neonate. 2004;85(4):273–82.PubMedCrossRefGoogle Scholar
  212. 212.
    Compernolle V, Brusselmans K, Acker T, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8(7):702–10.PubMedGoogle Scholar
  213. 213.
    Grover TR, Asikainen TM, Kinsella JP, Abman SH, White CW. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha are decreased in an experimental model of severe respiratory distress syndrome in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2007;292(6): L1345–51.PubMedCrossRefGoogle Scholar
  214. 214.
    Maniscalco WM, Watkins RH, Pryhuber GS, Bhatt A, Shea C, Huyck H. Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol. 2002;282(4):L811–23.PubMedCrossRefGoogle Scholar
  215. 215.
    Thebaud B, Ladha F, Michelakis ED, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112(16):2477–86.PubMedCrossRefGoogle Scholar
  216. 216.
    Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):189–201.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol. 2014;50(2):233–45.PubMedGoogle Scholar
  218. 218.
    Tambunting F, Beharry KD, Waltzman J, Modanlou HD. Impaired lung vascular endothelial growth factor in extremely premature baboons developing bronchopulmonary dysplasia/chronic lung disease. J Investig Med. 2005;53(5):253–62.PubMedCrossRefGoogle Scholar
  219. 219.
    Cannizzaro V, Zosky GR, Hantos Z, Turner DJ, Sly PD. High tidal volume ventilation in infant mice. Respir Physiol Neurobiol. 2008;162(1):93–9.PubMedCrossRefGoogle Scholar
  220. 220.
    Brew N, Hooper SB, Zahra V, Wallace M, Harding R. Mechanical ventilation injury and repair in extremely and very preterm lungs. PLoS One. 2013;8(5):e63905.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Bhandari V. The potential of non-invasive ventilation to decrease BPD. Semin Perinatol. 2013;37(2):108–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lauren M. Ramos
    • 1
  • Tanbir Najrana
    • 1
  • Juan Sanchez-Esteban
    • 1
    Email author
  1. 1.Department of Pediatrics, Neonatal-Perinatal Medicine, Women and Infants Hospital of Rhode IslandThe Warren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations