Bronchopulmonary Dysplasia pp 325-344 | Cite as
Anti-inflammatory Agents for the Prevention of Bronchopulmonary Dysplasia
Chapter
First Online:
- 1 Citations
- 983 Downloads
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease (CLD) of infancy that significantly affects mortality and morbidity of preterm infants and is a major health-care burden. The multifactorial etiology and complex pathogenesis of BPD makes it challenging to find a treatment for this condition. Inflammation plays a major role in the development of BPD. Here we briefly review the role of inflammation in the pathogenesis of BPD and the current evidence for anti-inflammatory therapeutics against BPD.
Keywords
Antenatal steroids Chorioamnionitis Chronic lung disease Clara cell protein Prematurity Surfactant Inhaled nitric oxideReferences
- 1.Ghanta S, Leeman KT, Christou H. An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):115–23.PubMedPubMedCentralCrossRefGoogle Scholar
- 2.Hilgendorff A, O’reilly MA. Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med (Lausanne). 2015;2:2.Google Scholar
- 3.Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):145–57. doi: 10.1002/bdra.23235.PubMedCrossRefGoogle Scholar
- 4.Cerny L, Torday JS, Rehan VK. Prevention and treatment of bronchopulmonary dysplasia: contemporary status and future outlook. Lung. 2008;186(2):75–89.PubMedCrossRefGoogle Scholar
- 5.Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.PubMedCrossRefGoogle Scholar
- 6.Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.PubMedCrossRefGoogle Scholar
- 7.Parker RA, Lindstrom DP, Cotton RB. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia. Semin Perinatol. 1996;20:206–9.PubMedCrossRefGoogle Scholar
- 8.Bland R. Neonatal chronic lung disease in the post-surfactant era. Biol Neonate. 2005;88:181–91.PubMedCrossRefGoogle Scholar
- 9.Thomas W, Speer CP. Chorioamnionitis is essential in the evolution of bronchopulmonary dysplasia—the case in favour. Paediatr Respir Rev. 2014;15(1):49–52.PubMedGoogle Scholar
- 10.Mcevoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014;11 Suppl 3:S146–53.PubMedPubMedCentralCrossRefGoogle Scholar
- 11.Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics. 2011;128(1):111–26.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Shaw GM, O’brodovich HM. Progress in understanding the genetics of bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):85–93.PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Hagood JS. Beyond the genome: epigenetic mechanisms in lung remodeling. Physiology (Bethesda). 2014;29(3):177–85.Google Scholar
- 14.Hamvas A, Deterding R, Balch WE, et al. Diffuse lung disease in children: summary of a scientific conference. Pediatr Pulmonol. 2014;49(4):400–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Joss-Moore LA, Wang Y, Ogata EM, Sainz AJ, Yu X, Callaway CW, McKnight RA, Albertine KH, Lane RH. IUGR differentially alters MeCP2 expression and H3K9Me3 of the PPARgamma gene in male and female rat lungs during alveolarization. Birth Defects Res A Clin Mol Teratol. 2011;91:672–81.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006;113 Suppl 3:17–42. doi: 10.1111/j.1471-0528.2006.01120.x.PubMedCrossRefGoogle Scholar
- 17.Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):189–201.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Russell GA. Antioxidants and neonatal lung disease. Eur J Pediatr. 1994;153(9 Suppl 2):S36–41.PubMedCrossRefGoogle Scholar
- 19.Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol. 2003;8(1):39–49.PubMedCrossRefGoogle Scholar
- 20.Russell GA, Cooke RW. Randomised controlled trial of allopurinol prophylaxis in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 1995;73:F27–31.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Aher SM, Ohlsson A. Early versus late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2012;10:CD004865.PubMedGoogle Scholar
- 22.Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B, et al. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr. 2003;143:713–9.PubMedCrossRefGoogle Scholar
- 23.Watts JL, Milner R, Zipursky A, et al. Failure of supplementation with vitamin E to prevent bronchopulmonary dysplasia in infants less than 1,500 g birth weight. Eur Respir J. 1991;4:188–90.PubMedGoogle Scholar
- 24.Rosenfeld WN, Davis JM, Parton L, Richter SE, Price A, Flaster E, et al. Safety and pharmacokinetics of recombinant human superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome. Pediatrics. 1996;97(6 Part 1):811–7.PubMedGoogle Scholar
- 25.Davis JM, Parad RB, Michele T, et al. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics. 2003;111:469–76.PubMedCrossRefGoogle Scholar
- 26.Pearson E, Bose C, Snidow T, Ransom L, Young T, Bose G, et al. Trial of vitamin A supplementation in very low birth weight infants at risk for bronchopulmonary dysplasia. J Pediatr. 1992;121:420–7.PubMedCrossRefGoogle Scholar
- 27.Kennedy KA, Stoll BJ, Ehrenkranz RA, Oh W, Wright LL, Stevenson DK, et al. Vitamin A to prevent bronchopulmonary dysplasia in very-low-birth-weight infants: has the dose been too low? The NICHD Neonatal Research network. Early Hum Dev. 1997;49:19–31.PubMedCrossRefGoogle Scholar
- 28.Darlow BA, Graham PJ. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev. 2011;10:CD000501.PubMedGoogle Scholar
- 29.Tyson JE, Wright LL, Oh W, Kennedy KA, Mele L, Ehrenkranz RA, et al. Vitamin A supplementation for extremely low birth weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med. 1999;340:1962–8. doi: 10.1056/NEJM199906243402505.PubMedCrossRefGoogle Scholar
- 30.Poggi C, Dani C. Antioxidant strategies and respiratory disease of the preterm newborn: an update. Oxid Med Cell Longev. 2014;2014:721043.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Ramanathan R. Choosing a right surfactant for respiratory distress syndrome treatment. Neonatology. 2008;95(1):1–5.PubMedCrossRefGoogle Scholar
- 32.Dani C, Buonocore G, Longini M, et al. Superoxide dismutase and catalase activity in naturally derived commercial surfactants. Pediatr Pulmonol. 2009;44(11):1125–31.PubMedCrossRefGoogle Scholar
- 33.Matalon S, Wright JR. Surfactant proteins and inflammation: the Yin and the Yang. Am J Respir Cell Mol Biol. 2004;31(6):585–6.PubMedCrossRefGoogle Scholar
- 34.Matalon S, Holm BA, Baker RR, Whitfield MK, Freeman BA. Characterization of antioxidant activities of pulmonary surfactant mixtures. Biochim Biophys Acta. 1990;1035(2):121–7.PubMedCrossRefGoogle Scholar
- 35.Merritt TA, Hallman M, Holcomb K. Human surfactant treatment of severe respiratory distress syndrome: pulmonary effluent indicators of lung inflammation. J Pediatr. 1986;108(5):741–8.PubMedCrossRefGoogle Scholar
- 36.Haagsman HP, Hogenkamp A, Van Eijk M, Veldhuizen EJA. Surfactant collectins and innate immunity. Neonatology. 2008;93(4):288–94.PubMedCrossRefGoogle Scholar
- 37.Matalon S, Shrestha K, Kirk M, et al. Modification of surfactant protein D by reactive oxygen-nitrogen intermediates is accompanied by loss of aggregating activity, in vitro and in vivo. FASEB J. 2009;23(5):1415–30.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Wu Y, Adam S, Hamann L, et al. Accumulation of inhibitory κB-α as a mechanism contributing to the anti-inflammatory effects of surfactant protein-A. Am J Respir Cell Mol Biol. 2004;31(6):587–94.PubMedCrossRefGoogle Scholar
- 39.Wofford JA, Wright JR. Surfactant protein A regulates IgG-mediated phagocytosis in inflammatory neutrophils. Am J Physiol Lung Cell Mol Physiol. 2007;293(6):L1437–43.PubMedCrossRefGoogle Scholar
- 40.Kotecha S, Davies PL, Clark HW, McGreal EP. Increased prevalence of low oligomeric state surfactant protein D with restricted lectin activity in bronchoalveolar lavage fluid from preterm infants. Thorax. 2013;68(5):460–7.PubMedCrossRefGoogle Scholar
- 41.Soll RF. Synthetic surfactant for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2000;2:CD001149.PubMedGoogle Scholar
- 42.Soll R, Ozek E. Prophylactic protein free synthetic surfactant for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2010;1:CD001079.PubMedGoogle Scholar
- 43.Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2009;2:CD007836.PubMedGoogle Scholar
- 44.Kallapur SG, Jobe AH. Contribution of inflammation to lung injury and development. Arch Dis Child Fetal Neonatal Ed. 2006;91(2):F132–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Bancalari E, Claure N, Sosenko IR. Bronchopulmonary dysplasia: changes in pathogenesis, epidemiology and definition. Semin Neonatol. 2003;8:63–71.PubMedCrossRefGoogle Scholar
- 46.Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123(5):1314–9.PubMedCrossRefGoogle Scholar
- 47.Fanaroff AA, Korones SB, Wright LL, et al. Incidence, presenting features, risk factors and significance of late onset septicemia in very low birth weight infants. The National Institute of Child Health and Human Development Neonatal Research Network. Pediatr Infect Dis J. 1998;17(7):593–8.PubMedCrossRefGoogle Scholar
- 48.Stoll BJ, Hansen N, Fanaroff AA, et al. Late onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics. 2002;110(2 pt 1):285–91.PubMedCrossRefGoogle Scholar
- 49.Pugin J. Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit Care Med. 2003;31(4 Suppl):S200–6.PubMedCrossRefGoogle Scholar
- 50.Torday JS, Rehan VK. Developmental cell/molecular biologic approach to the etiology and treatment of bronchopulmonary dysplasia. Pediatr Res. 2007;62(1):2–7.PubMedCrossRefGoogle Scholar
- 51.Liu Y-Y, Li L-F, Fu J-Y, Kao K-C, Huang C-C, et al. Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway. PLoS One. 2014;9(10):e109953. doi: 10.1371/journal.pone.0109953.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Li LF, Kao KC, Yang CT, Huang CC, Liu YY. Ethyl pyruvate reduces ventilation-induced neutrophil infiltration and oxidative stress. Exp Biol Med (Maywood). 2012;237(6):720–7.CrossRefGoogle Scholar
- 53.Li LF, Huang CC, Lin HC, Tsai YH, Quinn DA, Liao SK. Unfractionated heparin and enoxaparin reduce high-stretch ventilation augmented lung injury: a prospective, controlled animal experiment. Crit Care. 2009;13(4):R108.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Li LF, Yang CT, Huang CC, Liu YY, Kao KC, Lin HC. Low-molecular-weight heparin reduces hyperoxia-augmented ventilator-induced lung injury via serine/threonine kinase-protein kinase B. Respir Res. 2011;12:90.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Stevens TP, Harrington EW, Blennow M, Soll RF. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007;4:CD003063. pub3.Google Scholar
- 56.Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012;3:CD000510.PubMedGoogle Scholar
- 57.Bhandari V. The potential of non-invasive ventilation to decrease BPD. Semin Perinatol. 2013;37(2):108–14.PubMedCrossRefGoogle Scholar
- 58.Meneses J, Bhandari V, Alves JG. Nasal intermittent positive pressure ventilation vs. nasal continuous positive airway pressure for preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166:372–6.PubMedCrossRefGoogle Scholar
- 59.Moretti C, Giannini L, Fassi C, Gizzi C, Papoff P, Colarizi P. Nasal flow synchronized intermittent positive pressure ventilation to facilitate weaning in very low birth weight infants: unmasked randomized controlled trial. Pediatr Int. 2008;50:85–91.PubMedCrossRefGoogle Scholar
- 60.Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts R. Nasal intermittent positive pressure (NIPPV) does not confer benefit above nasal CPAP (nCPAP) in extremely low birth weight (ELBW)infants <1000 g BW—the NIPPV International Randomized Controlled Trial. EPAS. 2012;1675.1671.Google Scholar
- 61.Ramanathan R, Sekar KC, Rasmussen M, Bhatia J, Soll RF. Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants <30 weeks’ gestation: a randomized, controlled trial. J Perinatol. 2012;32:336–43.PubMedCrossRefGoogle Scholar
- 62.Bhandari A, Bhandari V. Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics. 2009;123(6):1562–73.PubMedCrossRefGoogle Scholar
- 63.Cirino G, Distrutti E, Wallace JL. Nitric oxide and inflammation. Inflamm Allergy Drug Targets. 2006;5(2):115–9.PubMedCrossRefGoogle Scholar
- 64.Truog WE, Nelin LD, Das A, et al. Inhaled nitric oxide usage in preterm infants in the NICHD neonatal research network: inter-site variation and propensity evaluation. J Perinatol. 2014;34(11):842–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Askie LM, Ballard RA, Cutter GR, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics. 2011;128(4):729–39.PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Barrington KJ, Finer N. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev. 2010;12:CD000509.PubMedGoogle Scholar
- 67.Kinsella JP, Cutter GR, Steinhorn RH, et al. Noninvasive inhaled nitric oxide does not prevent bronchopulmonary dysplasia in premature newborns. J Pediatr. 2014;165(6):1104–8.e1.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Ballard RA, Keller RL, Black DM, Ballard PL, Merrill JD, Eichenwald EC, et al. Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J Pediatr. 2015 Oct 20. pii:S0022-3476(15)01044-6Google Scholar
- 69.Aghai ZH, Kode A, Saslow JG, et al. Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatr Res. 2007;62(4):483–8.PubMedCrossRefGoogle Scholar
- 70.Ballard HO, Shook LA, Bernard P, et al. Use of azithromycin for the prevention of bronchopulmonary dysplasia in preterm infants: a randomized, double-blind, placebo controlled trial. Pediatr Pulmonol. 2011;46(2):111–8.PubMedCrossRefGoogle Scholar
- 71.Nair V, Loganathan P, Soraisham AS. Azithromycin and other macrolides for prevention of bronchopulmonary dysplasia: a systematic review and meta-analysis. Neonatology. 2014;106(4):337–47.PubMedCrossRefGoogle Scholar
- 72.Viscardi RM, Othman AA, Hassan HE, et al. Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose. Antimicrob Agents Chemother. 2013;57(5):2127–33.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Schulzke SM, Kaempfen S, Patole SK. Pentoxifylline for the prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2014;11:CD010018.PubMedGoogle Scholar
- 74.Schulzke SM, Deshmukh M, Nathan EA, Doherty DA, Patole SK. Nebulized pentoxifylline for reducing the duration of oxygen supplementation in extremely preterm neonates. J Pediatr. 2015;166(5):1158–62.e2.PubMedCrossRefGoogle Scholar
- 75.Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;3:CD004454.PubMedGoogle Scholar
- 76.Crowther CA, Mckinlay CJ, Middleton P, Harding JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev. 2011;6:CD003935.PubMedGoogle Scholar
- 77.Brownfoot FC, Gagliardi DI, Bain E, Middleton P, Crowther CA. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013;8:CD006764.PubMedGoogle Scholar
- 78.Doyle LW, Ehrenkranz RA, Halliday HL. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;5:CD001146. pub4.PubMedGoogle Scholar
- 79.Doyle LW, Ehrenkranz RA, Halliday HL. Late (>7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;5:CD001145.PubMedGoogle Scholar
- 80.Halliday HL, Ehrenkranz RA, Doyle LW. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2010;1:CD001146.PubMedGoogle Scholar
- 81.Doyle LW, Ehrenkranz RA, Halliday HL. Postnatal hydrocortisone for preventing or treating bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(2):111–7.PubMedCrossRefGoogle Scholar
- 82.Onland W, Offringa M, van Kaam A. Late (≥ 7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2012;(4):CD002311. doi: 10.1002/14651858.CD002311.pub3.
- 83.Shah VS, Ohlsson A, Halliday HL, Dunn M. Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilated very lowbirth weight preterm neonates. Cochrane Database Syst Rev. 2012;(5):CD001969. doi: 10.1002/14651858.CD001969.pub3.
- 84.Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2012;(5):CD002058. doi: 10.1002/14651858.CD002058.pub2.
- 85.Iyengar A, Davis JM. Drug therapy for the prevention and treatment of bronchopulmonary dysplasia. Front Pharmacol. 2015;6:12.PubMedPubMedCentralCrossRefGoogle Scholar
- 86.Bassler D, Plavka R, Shinwell ES, Hallman M, Jarreau PH, Carnielli V, et al. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N Engl J Med. 2015;373(16):1497–506. doi: 10.1056/NEJMoa1501917.PubMedCrossRefGoogle Scholar
- 87.Ma L, Li N, Liu X, et al. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuate hyperoxia-induced lung injury in neonatal mice. Nutrition. 2012;28(11–12):1186–91.PubMedCrossRefGoogle Scholar
- 88.Manley BJ, Makrides M, Collins CT, et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics. 2011;128(1):e71–7.PubMedCrossRefGoogle Scholar
- 89.O’reilly M, Thébaud B. Using cell-based strategies to break the link between bronchopulmonary dysplasia and the development of chronic lung disease in later life. Pulm Med. 2013;2013:874161.PubMedPubMedCentralGoogle Scholar
- 90.Fung ME, Thébaud B. Stem cell-based therapy for neonatal lung disease: it is in the juice. Pediatr Res. 2014;75(1–1):2–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Chang YS, Ahn SY, Yoo HS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966–72.e6.PubMedCrossRefGoogle Scholar
- 92.Sakurai R, Shin E, Fonseca S, Sakurai T, Litonjua AA, Weiss ST, Torday JS, Rehan VK. 1α,25(OH)2D3 and its 3-epimer promote rat lung alveolar epithelial-mesenchymal interactions and inhibit lipofibroblast apoptosis. Am J Physiol Lung Cell Mol Physiol. 2009;297:L496–505.PubMedPubMedCentralCrossRefGoogle Scholar
- 93.Nguyen TM, Guillozo H, Marin L, Tordet C, Koite S, Garabedian M. Evidence for a vitamin D paracrine system regulating maturation of developing rat lung epithelium. Am J Physiol Lung Cell Mol Physiol. 1996;271:L392–9.Google Scholar
- 94.Lykkedegn S, Sorensen GL, Beck-nielsen SS, Christesen HT. The impact of vitamin D on fetal and neonatal lung maturation. A systematic review. Am J Physiol Lung Cell Mol Physiol. 2015;308(7):L587–602.PubMedCrossRefGoogle Scholar
- 95.Hollis BW, Wagner CL. Vitamin D deficiency during pregnancy: an ongoing epidemic. Am J Clin Nutr. 2006;84(2):273.PubMedGoogle Scholar
- 96.Devereux G, Litonjua AA, Turner SW, et al. Maternal vitamin D intake during pregnancy and early childhood wheezing. Am J Clin Nutr. 2007;85(3):853–9.PubMedGoogle Scholar
- 97.Yurt M, Liu J, Sakurai R, Gong M, Husain SM, Siddiqui MA, Husain M, et al. Vitamin D supplementation blocks pulmonary structural and functional changes in a rat model of perinatal vitamin D deficiency. Am J Physiol Lung Cell Mol Physiol. 2014;307(11):L859–67.PubMedPubMedCentralCrossRefGoogle Scholar
- 98.Torday JS, Torres E, Rehan VK. The role of fibroblast trans differentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med. 2003;22:189–207.PubMedCrossRefGoogle Scholar
- 99.Rehan VK, Wang Y, Patel S, Santos J, Torday JS. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, prevents hyperoxia-induced neonatal rat lung injury in vivo. Pediatr Pulmonol. 2006;41(6):558–69.PubMedCrossRefGoogle Scholar
- 100.Morales E, Sakurai R, Husain S, et al. Nebulized PPARγ agonists: a novel approach to augment neonatal lung maturation and injury repair in rats. Pediatr Res. 2014;75(5):631–40.PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Rehan VK, Sakurai R, Corral J, et al. Antenatally administered PPAR-gamma agonist rosiglitazone prevents hyperoxia-induced neonatal rat lung injury. Am J Physiol Lung Cell Mol Physiol. 2010;299(5):L672–80.PubMedPubMedCentralCrossRefGoogle Scholar
- 102.Wang Y, Santos J, Sakurai R, et al. Peroxisome proliferator-activated receptor gamma agonists enhance lung maturation in a neonatal rat model. Pediatr Res. 2009;65(2):150–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Sakurai R, Li Y, Torday JS, Rehan VK. Curcumin augments lung maturation, preventing neonatal lung injury by inhibiting TGF-β signaling. Am J Physiol Lung Cell Mol Physiol. 2011;301(5):L721–30.PubMedPubMedCentralCrossRefGoogle Scholar
- 104.Sakurai R, Villarreal P, Husain S, et al. Curcumin protects the developing lung against long-term hyperoxic injury. Am J Physiol Lung Cell Mol Physiol. 2013;305(4):L301–11.PubMedPubMedCentralCrossRefGoogle Scholar
- 105.Zhang Y, Liang D, Dong L, et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir Res. 2015;16:43.PubMedPubMedCentralCrossRefGoogle Scholar
- 106.Farrow KN, Steinhorn RH. Sildenafil therapy for bronchopulmonary dysplasia: not quite yet. J Perinatol. 2012;32(1):1–3.PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thébaud B. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med. 2005;172(6):750–6.PubMedCrossRefGoogle Scholar
- 108.Rubin LJ, Badesch DB, Fleming TR, Galie N, Simonneau G, Ghofrani HA, et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: SUPER-2. Chest. 2011;140(5):1274–83.PubMedCrossRefGoogle Scholar
- 109.De Visser YP, Walther FJ, Laghmani el H, Boersma H, Van der Laarse A, Wagenaar GT. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir Res. 2009;10:30.PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Park HS, Park JW, Kim HJ, et al. Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway. Am J Respir Cell Mol Biol. 2013;48(1):105–13.PubMedCrossRefGoogle Scholar
- 111.Nyp M, Sandritter T, Poppinga N, Simon C, Truog WE. Sildenafil citrate, bronchopulmonary dysplasia and disordered pulmonary gas exchange: any benefits? J Perinatol. 2012;32(1):64–9.PubMedCrossRefGoogle Scholar
- 112.Tan K, Krishnamurthy MB, O’heney JL, Paul E, Sehgal A. Sildenafil therapy in bronchopulmonary dysplasia-associated pulmonary hypertension: a retrospective study of efficacy and safety. Eur J Pediatr. 2015;174:1109–15.PubMedCrossRefGoogle Scholar
- 113.Chandra S, Davis JM, Drexler S, et al. Safety and efficacy of intratracheal recombinant human Clara cell protein in a newborn piglet model of acute lung injury. Pediatr Res. 2003;54(4):509–15.PubMedCrossRefGoogle Scholar
- 114.Wolfson MR, Funanage VL, Kirwin SM, et al. Recombinant human Clara cell secretory protein treatment increases lung mRNA expression of surfactant proteins and vascular endothelial growth factor in a premature lamb model of respiratory distress syndrome. Am J Perinatol. 2008;25(10):637–45.PubMedCrossRefGoogle Scholar
- 115.Miller TL, Shashikant BN, Melby JM, Pilon AL, Shaffer TH, Wolfson MR. Recombinant human Clara cell secretory protein in acute lung injury of the rabbit: effect of route of administration. Pediatr Crit Care Med. 2005;6(6):698–706.PubMedCrossRefGoogle Scholar
- 116.Levine CR, Gewolb IH, Allen K, et al. The safety, pharmacokinetics, and anti-inflammatory effects of intratracheal recombinant human Clara cell protein in premature infants with respiratory distress syndrome. Pediatr Res. 2005;58(1):15–21.PubMedCrossRefGoogle Scholar
- 117.Abdel-latif ME, Osborn DA. Intratracheal Clara cell secretory protein (CCSP) administration in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2011;5:CD008308.PubMedGoogle Scholar
- 118.Clinical Trials.gov Efficacy of Recombinant Human Clara Cell 10 Protein (rhCC10) Administered to Premature Neonates with Respiratory Distress Syndrome Clinical. Trials.gov identifier: NCT01941745.Google Scholar
- 119.Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21.PubMedCrossRefGoogle Scholar
- 120.Hallman M, Bry K, Hoppu K, Lappi M, Pohjavuori M. Inositol supplementation in premature infants with respiratory distress syndrome. N Engl J Med. 1992;326:1233–9.PubMedCrossRefGoogle Scholar
- 121.Howlett A, Ohlsson A. Inositol for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2003;4:CD000366.PubMedGoogle Scholar
- 122.Ozdemir R, Erdeve O, Dizdar EA, Oguz SS, Uras N, Saygan S, et al. Clarithromycin in preventing bronchopulmonary dysplasia in urea plasma urealyticum-positive preterm infants. Pediatrics. 2011;128:e1496–501.PubMedCrossRefGoogle Scholar
- 123.Beam KS, Aliaga S, Ahlfeld SK, Cohen-Wolkowiez M, Smith PB, Laughon MM. A systematic review of randomized controlled trials for the prevention of bronchopulmonary dysplasia in infants. J Perinatol. 2014;34:705–10.PubMedPubMedCentralCrossRefGoogle Scholar
- 124.Daniels L, Gibson R, Simmer K. Randomised clinical trial of parenteral selenium supplementation in preterm infants. Arch Dis Child. 1996;74:F158–64.CrossRefGoogle Scholar
- 125.Darlow BA, Winterbourn CC, Inder TE, Graham PJ, Harding JE, Weston PJ, Austin NC, Elder DE, Mogridge N, Buss IH, Sluis KB, The New Zealand Neonatal Study Group. The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial. J Pediatr. 2000;136:473–80.PubMedCrossRefGoogle Scholar
- 126.Huston RK, Jelen BJ, Vidgoff J. Selenium supplementation in low-birthweight premature infants: relationship to trace metals and antioxidant enzymes. J Parent Ent Nutr. 1991;15:556–9.CrossRefGoogle Scholar
- 127.Darlow BA, Austin N. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst Rev. 2003;(4):CD003312. doi: 10.1002/14651858.CD003312.
- 128.Trotter A, Maier L, Grill HJ, Kohn T, Heckmann M, Pohlandt F. Effects of postnatal estradiol and progesterone replacement in extremely preterm infants. J Clin Endocrinol Metab. 1999;84:4531–5.PubMedCrossRefGoogle Scholar
- 129.Stiskal JA, Dunn MS, Shennan AT, et al. alpha1-Proteinase inhibitor therapy for the prevention of chronic lung disease of prematurity: a randomized, controlled trial. Pediatrics. 1998;101:89–94.PubMedCrossRefGoogle Scholar
- 130.Gitto E, Reiter RJ, Amodio A, et al. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res. 2004;36(4):250–5.PubMedCrossRefGoogle Scholar
- 131.Viscardi RM, Hasday JD, Gumpper KF, et al. Cromolyn sodium prophylaxis inhibits pulmonary proinflammatory cytokines in infants at high risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;156:1523–9.PubMedCrossRefGoogle Scholar
- 132.Ng GY, Ohlsson A. Cromolyn sodium for the prevention of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2001;1:CD003059.Google Scholar
- 133.Watterberg KL, Murphy S. The neonatal cromolyn study group failure of cromolyn sodium to reduce the incidence of bronchopulmonary dysplasia: a pilot study. Pediatrics. 1993;91:803–6.PubMedGoogle Scholar
- 134.Smith LM, Leake RD, Berman N, et al. Postnatal thyroxine supplementation in infants less than 32 weeks’ gestation: effects on pulmonary morbidity. J Perinatol. 2000;20:427–31.PubMedCrossRefGoogle Scholar
- 135.Terrin G, Canani RB, Passariello A, Messina F, Conti MG, Caoci S, et al. Zinc supplementation reduces morbidity and mortality in very-lowbirth-weight preterm neonates: a hospital-based randomized, placebo-controlled trial in an industrialized country. Am J Clin Nutr. 2013;98:1468–74.PubMedCrossRefGoogle Scholar
- 136.Rush MG, Engelhardt B, Parker RA, Hazinski TA. Double-blind, placebo-controlled trial of alternate-day furosemide therapy in infants with chronic bronchopulmonary dysplasia. J Pediatr. 1990;117(1 Pt 1):112–8.PubMedCrossRefGoogle Scholar
- 137.Sahni J, Phelps SJ. Nebulized furosemide in the treatment of bronchopulmonary dysplasia in preterm infants. J Pediatr Pharmacol Ther. 2011;16(1):14–22.PubMedPubMedCentralGoogle Scholar
- 138.Stewart A, Brion LP. Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;9:CD001453.PubMedGoogle Scholar
- 139.Ng G, Da Silva O, Ohlsson A. Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2012;6:CD003214.PubMedGoogle Scholar
- 140.De Boeck K, Smith J, Van Lierde S, Devlieger H. Response to bronchodilators in clinically stable 1-year-old patients with bronchopulmonary dysplasia. Eur J Pediatr. 1998;157(1):75–9.PubMedCrossRefGoogle Scholar
- 141.ClinicalTrials.gov The efficacy and safety of montelukast sodium in the prevention of bronchopulmonary dysplasia (BPD). Clinical.Trials.gov identifier: NCT01717625.Google Scholar
- 142.Bhandari V. Drug therapy trials for the prevention of bronchopulmonary dysplasia: current and future targets. Front Pediatr. 2014;2:76. doi: 10.3389/fped.2014.00076. eCollection 2014.PubMedPubMedCentralCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2016