Bronchopulmonary Dysplasia pp 259-279 | Cite as
Pulmonary Hypertension in Bronchopulmonary Dysplasia
Chapter
First Online:
- 1 Citations
- 1k Downloads
Abstract
Pulmonary hypertension (PH) is increasingly recognized as a complication of bronchopulmonary dysplasia (BPD) and is associated with increased morbidity, mortality, and healthcare expenditure. Despite many recent clinical advances, pulmonary vascular disease (PVD) remains an important contributor to poor outcomes in BPD. Understanding the relationship between BPD and PH and identifying optimal therapies may help minimize morbidity and improve outcomes.
Keywords
Pulmonary hypertension Bronchopulmonary dysplasia Infant Premature Hypertension Pulmonary Inhaled nitric oxide SildenafilReferences
- 1.Ambalavanan N, Carlo WA. Bronchopulmonary dysplasia: new insights. Clin Perinatol. 2004;31(3):613–28.PubMedCrossRefGoogle Scholar
- 2.Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):179–84.PubMedCrossRefGoogle Scholar
- 3.Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7): 357–68.PubMedCrossRefGoogle Scholar
- 4.Bonikos DS, Bensch KG, Northway Jr WH, Edwards DK. Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol. 1976;7(6):643–66.PubMedCrossRefGoogle Scholar
- 5.Mourani PM, Abman SH. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr. 2013;25(3):329–37.PubMedCrossRefGoogle Scholar
- 6.Steinhorn RH, Kinsella JP, Abman SH. Beyond pulmonary hypertension: sildenafil for chronic lung disease of prematurity. Am J Respir Cell Mol Biol. 2013;48(2):3–5.CrossRefGoogle Scholar
- 7.Haworth SG. The management of pulmonary hypertension in children. Arch Dis Child. 2008;93(7):620–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.An HS, Bae EJ, Kim GB, Kwon BS, Beak JS, Kim EK, et al. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J. 2010;40(3):131–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Kim DH, Kim HS, Choi CW, Kim EK, Kim BI, Choi JH. Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology. 2012;101(1):40–6.PubMedCrossRefGoogle Scholar
- 10.Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics. 2007;120(6):1260–9.PubMedCrossRefGoogle Scholar
- 11.Slaughter JL, Pakrashi T, Jones DE, South AP, Shah TA. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J Perinatol. 2011;31(10):635–40.PubMedCrossRefGoogle Scholar
- 12.Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics. 2012;129(3):e682–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Ali Z, Schmidt P, Dodd J, Jeppesen DL. Predictors of bronchopulmonary dysplasia and pulmonary hypertension in newborn children. Dan Med J. 2013;60(8):A4688.PubMedGoogle Scholar
- 14.Mourani PM, Sontag MK, Younoszai A, Miller JI, Kinsella JP, Baker CD, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;191(1):87–95.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Ambalavanan N, Walsh M, Bobashev G, Das A, Levine B, Carlo WA, et al. Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants. Pediatrics. 2011;127(1):e106–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Check J, Gotteiner N, Liu X, Su E, Porta N, Steinhorn R, et al. Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J Perinatol. 2013;33(7):553–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Hansen AR, Barnes CM, Folkman J, McElrath TF. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr. 2010;156(4):532–6.PubMedCrossRefGoogle Scholar
- 18.Collaco JM, Romer LH, Stuart BD, Coulson JD, Everett AD, Lawson EE, et al. Frontiers in pulmonary hypertension in infants and children with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(11):1042–53.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Abman SH. Monitoring cardiovascular function in infants with chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed. 2002;87(1):F15–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Pulmonary hypertension in infants with bronchopulmonary dysplasia. Korean J Pediatr. 2010;53(6):688–93.Google Scholar
- 21.Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med. 1999;160(4):1333–46.PubMedCrossRefGoogle Scholar
- 22.Grover TR, Parker TA, Balasubramaniam V, Markham NE, Abman SH. Pulmonary hypertension impairs alveolarization and reduces lung growth in the ovine fetus. Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L648–54.PubMedCrossRefGoogle Scholar
- 23.Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell. 2011;147(3): 539–53.PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Peng T, Tian Y, Boogerd CJ, Lu MM, Kadzik RS, Stewart KM, et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature. 2013;500(7464):589–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Adv Exp Med Biol. 2010;661:323–35.PubMedCrossRefGoogle Scholar
- 27.Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, et al. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383(6595):73–5.PubMedCrossRefGoogle Scholar
- 28.Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9.PubMedCrossRefGoogle Scholar
- 29.Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.PubMedCrossRefGoogle Scholar
- 30.Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One. 2013;8(9):e74686.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239–47.PubMedGoogle Scholar
- 32.Schwarz M, Lee M, Zhang F, Zhao J, Jin Y, Smith S, et al. EMAP II: a modulator of neovascularization in the developing lung. Am J Physiol. 1999;276(2 Pt 1):L365–75.PubMedGoogle Scholar
- 33.Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev. 2000;95(1–2):123–32.PubMedCrossRefGoogle Scholar
- 34.Schwarz MA, Zhang F, Lane JE, Schachtner S, Jin Y, Deutsch G, et al. Angiogenesis and morphogenesis of murine fetal distal lung in an allograft model. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L1000–7.PubMedGoogle Scholar
- 35.Schwarz MA, Wan Z, Liu J, Lee MK. Epithelial-mesenchymal interactions are linked to neovascularization. Am J Respir Cell Mol Biol. 2004;30(6):784–92.PubMedCrossRefGoogle Scholar
- 36.Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatr Res. 2013;73(3):252–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Iosef C, Alastalo TP, Hou Y, Chen C, Adams ES, Lyu SC, et al. Inhibiting NF-kappaB in the developing lung disrupts angiogenesis and alveolarization. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1023–36.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Cornfield DN. Developmental regulation of oxygen sensing and ion channels in the pulmonary vasculature. Adv Exp Med Biol. 2010;661:201–20.PubMedCrossRefGoogle Scholar
- 39.Tsao PN, Wei SC. Prenatal hypoxia downregulates the expression of pulmonary vascular endothelial growth factor and its receptors in fetal mice. Neonatology. 2013;103(4):300–7.PubMedCrossRefGoogle Scholar
- 40.Vadivel A, Alphonse RS, Etches N, van Haaften T, Collins JJ, O’Reilly M, et al. Hypoxia inducible factors promotes alveolar development and regeneration. Am J of Respir Cell Mol Biol. 2014;50(1):96–105.Google Scholar
- 41.van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 42.O’Reilly M, Thebaud B. Cell-based strategies to reconstitute lung function in infants with severe bronchopulmonary dysplasia. Clin Perinatol. 2012;39(3):703–25.PubMedCrossRefGoogle Scholar
- 43.Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res. 2006;312(5):630–41.PubMedCrossRefGoogle Scholar
- 44.Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem. 1998;273(29):18514–21.PubMedCrossRefGoogle Scholar
- 45.Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY. Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res. 1999;58(3):224–37.PubMedCrossRefGoogle Scholar
- 46.Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60.PubMedCrossRefGoogle Scholar
- 47.Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171–80.PubMedCrossRefGoogle Scholar
- 48.Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112(16):2477–86.PubMedCrossRefGoogle Scholar
- 49.Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27(12):552–8.PubMedCrossRefGoogle Scholar
- 50.Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235–9.PubMedCrossRefGoogle Scholar
- 51.Reis M, Liebner S. Wnt signaling in the vasculature. Exp Cell Res. 2013;319(9):1317–23.PubMedCrossRefGoogle Scholar
- 52.Goodwin AM, D’Amore PA. Wnt signaling in the vasculature. Angiogenesis. 2002;5(1–2):1–9.PubMedCrossRefGoogle Scholar
- 53.Kazanskaya O, Ohkawara B, Heroult M, Wu W, Maltry N, Augustin HG, et al. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. Development. 2008;135(22):3655–64.PubMedCrossRefGoogle Scholar
- 54.Cornett B, Snowball J, Varisco BM, Lang R, Whitsett J, Sinner D. Wntless is required for peripheral lung differentiation and pulmonary vascular development. Dev Biol. 2013;379(1):38–52.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Mujahid S, Nielsen HC, Volpe MV. MiR-221 and miR-130a regulate lung airway and vascular development. PLoS One. 2013;8(2):e55911.PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Han RN, Babaei S, Robb M, Lee T, Ridsdale R, Ackerley C, et al. Defective lung vascular development and fatal respiratory distress in endothelial NO synthase-deficient mice: a model of alveolar capillary dysplasia? Circ Res. 2004;94(8):1115–23.PubMedCrossRefGoogle Scholar
- 57.Tulloh RM, Hislop AA, Boels PJ, Deutsch J, Haworth SG. Chronic hypoxia inhibits postnatal maturation of porcine intrapulmonary artery relaxation. Am J Physiol. 1997;272(5 Pt 2):H2436–45.PubMedGoogle Scholar
- 58.Han RN, Stewart DJ. Defective lung vascular development in endothelial nitric oxide synthase-deficient mice. Trends Cardiovasc Med. 2006;16(1):29–34.PubMedCrossRefGoogle Scholar
- 59.Shaul PW. Nitric oxide in the developing lung. Adv Pediatr. 1995;42:367–414.PubMedGoogle Scholar
- 60.Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin 3rd FC. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol. 1997;272(5 Pt 1):L1005–12.PubMedGoogle Scholar
- 61.Sherman TS, Chen Z, Yuhanna IS, Lau KS, Margraf LR, Shaul PW. Nitric oxide synthase isoform expression in the developing lung epithelium. Am J Physiol. 1999;276(2 Pt 1):L383–90.PubMedGoogle Scholar
- 62.Shaul PW, Afshar S, Gibson LL, Sherman TS, Kerecman JD, Grubb PH, et al. Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am J Physiol Lung Cell Mol Physiol. 2002;283(6):L1192–9.PubMedCrossRefGoogle Scholar
- 63.Afshar S, Gibson LL, Yuhanna IS, Sherman TS, Kerecman JD, Grubb PH, et al. Pulmonary NO synthase expression is attenuated in a fetal baboon model of chronic lung disease. Am J Physiol Lung Cell Mol Physiol. 2003;284(5):L749–58.PubMedCrossRefGoogle Scholar
- 64.Steinhorn RH, Shaul PW, de Regnier RA, Kennedy KA. Inhaled nitric oxide and bronchopulmonary dysplasia. Pediatrics. 2011;128(1):e255–6. Author reply e6–7.PubMedCrossRefGoogle Scholar
- 65.Kumar VH, Hutchison AA, Lakshminrusimha S, Morin 3rd FC, Wynn RJ, Ryan RM. Characteristics of pulmonary hypertension in preterm neonates. J Perinatol. 2007;27(4): 214–9.PubMedCrossRefGoogle Scholar
- 66.Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, et al. Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res. 2006;99(9):951–60.PubMedCrossRefGoogle Scholar
- 67.Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, et al. The FGF system has a key role in regulating vascular integrity. J Clin Invest. 2008;118(10):3355–66.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Borghesi A, Massa M, Campanelli R, Garofoli F, Longo S, Cabano R, et al. Different subsets of circulating angiogenic cells do not predict bronchopulmonary dysplasia or other diseases of prematurity in preterm infants. Int J Immunopathol Pharmacol. 2013;26(3):809–16.PubMedGoogle Scholar
- 69.Mammoto T, Jiang E, Jiang A, Mammoto A. ECM structure and tissue stiffness control postnatal lung development through the LRP5-Tie2 signaling system. Am J Respir Cell Mol Biol. 2013;49(6):1009–18.PubMedCrossRefGoogle Scholar
- 70.Lee HJ, Lee YJ, Choi CW, Lee JA, Kim EK, Kim HS, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, restores alveolar and pulmonary vascular development in a rat model of bronchopulmonary dysplasia. Yonsei Med J. 2014;55(1): 99–106.PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Breinholt JP, Hawkins JA, Minich LA, Tani LY, Orsmond GS, Ritter S, et al. Pulmonary vein stenosis with normal connection: associated cardiac abnormalities and variable outcome. Ann Thorac Surg. 1999;68(1):164–8.PubMedCrossRefGoogle Scholar
- 72.Drossner DM, Kim DW, Maher KO, Mahle WT. Pulmonary vein stenosis: prematurity and associated conditions. Pediatrics. 2008;122(3):e656–61.PubMedCrossRefGoogle Scholar
- 73.Mourani PM, Ivy DD, Rosenberg AA, Fagan TE, Abman SH. Left ventricular diastolic dysfunction in bronchopulmonary dysplasia. J Pediatr. 2008;152(2):291–3.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Newth CJ, Gow RM, Rowe RD. The assessment of pulmonary arterial pressures in bronchopulmonary dysplasia by cardiac catheterization and M-mode echocardiography. Pediatr Pulmonol. 1985;1(1):58–62.PubMedCrossRefGoogle Scholar
- 75.Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH. Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics. 2008;121(2):317–25.PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Skinner JR, Stuart AG, O’Sullivan J, Heads A, Boys RJ, Hunter S. Right heart pressure determination by Doppler in infants with tricuspid regurgitation. Arch Dis Child. 1993;69(2):216–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Hill KD, Lim DS, Everett AD, Ivy DD, Moore JD. Assessment of pulmonary hypertension in the pediatric catheterization laboratory: current insights from the Magic registry. Catheter Cardiovasc Interv. 2010;76(6):865–73.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Ambalavanan N, Mourani P. Pulmonary hypertension in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):240–6.PubMedCrossRefGoogle Scholar
- 79.Taylor CJ, Derrick G, McEwan A, Haworth SG, Sury MR. Risk of cardiac catheterization under anaesthesia in children with pulmonary hypertension. Br J Anaesth. 2007;98(5): 657–61.PubMedCrossRefGoogle Scholar
- 80.Shukla AC, Almodovar MC. Anesthesia considerations for children with pulmonary hypertension. Pediatr Crit Care Med. 2010;11(2 Suppl):S70–3.PubMedCrossRefGoogle Scholar
- 81.Carmosino MJ, Friesen RH, Doran A, Ivy DD. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg. 2007;104(3):521–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 82.van der Griend BF, Lister NA, McKenzie IM, Martin N, Ragg PG, Sheppard SJ, et al. Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg. 2011;112(6):1440–7.PubMedCrossRefGoogle Scholar
- 83.Gorenflo M, Gu H, Xu Z. Peri-operative pulmonary hypertension in paediatric patients: current strategies in children with congenital heart disease. Cardiology. 2010;116(1):10–7.PubMedCrossRefGoogle Scholar
- 84.Doull IJ, Mok Q, Tasker RC. Tracheobronchomalacia in preterm infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 1997;76(3):F203–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Del Cerro MJ, Sabate Rotes A, Carton A, Deiros L, Bret M, Cordeiro M, et al. Pulmonary hypertension in bronchopulmonary dysplasia: clinical findings, cardiovascular anomalies and outcomes. Pediatr Pulmonol. 2014;49(1):49–59.Google Scholar
- 86.Kim GB. Pulmonary hypertension in infants with bronchopulmonary dysplasia. Korean J Pediatr. 2010;53(6):688–93.PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Kim JS, Shim EJ. B-type natriuretic peptide assay for the diagnosis and prognosis of patent ductus arteriosus in preterm infants. Korean Circ J. 2012;42(3):192–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Sanjeev S, Pettersen M, Lua J, Thomas R, Shankaran S, L’Ecuyer T. Role of plasma B-type natriuretic peptide in screening for hemodynamically significant patent ductus arteriosus in preterm neonates. J Perinatol. 2005;25(11):709–13.PubMedCrossRefGoogle Scholar
- 89.Cuna A, Kandasamy J, Sims B. B-type natriuretic peptide and mortality in extremely low birth weight infants with pulmonary hypertension: a retrospective cohort analysis. BMC Pediatr. 2014;14:68.PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Farquhar M, Fitzgerald DA. Pulmonary hypertension in chronic neonatal lung disease. Paediatr Respir Rev. 2010;11(3):149–53.PubMedCrossRefGoogle Scholar
- 91.Berman Jr W, Yabek SM, Dillon T, Burstein R, Corlew S. Evaluation of infants with bronchopulmonary dysplasia using cardiac catheterization. Pediatrics. 1982;70(5):708–12.PubMedGoogle Scholar
- 92.Hudak BB, Allen MC, Hudak ML, Loughlin GM. Home oxygen therapy for chronic lung disease in extremely low-birth-weight infants. Am J Dis Child. 1989;143(3):357–60.PubMedGoogle Scholar
- 93.Fleck BW, Stenson BJ. Retinopathy of prematurity and the oxygen conundrum: lessons learned from recent randomized trials. Clin Perinatol. 2013;40(2):229–40.PubMedCrossRefGoogle Scholar
- 94.Abman SH, Wolfe RR, Accurso FJ, Koops BL, Bowman CM, Wiggins Jr JW. Pulmonary vascular response to oxygen in infants with severe bronchopulmonary dysplasia. Pediatrics. 1985;75(1):80–4.PubMedGoogle Scholar
- 95.Farrow KN, Wedgwood S, Lee KJ, Czech L, Gugino SF, Lakshminrusimha S, et al. Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol. 2010;174(3):272–81.PubMedPubMedCentralCrossRefGoogle Scholar
- 96.Farrow KN, Groh BS, Schumacker PT, Lakshminrusimha S, Czech L, Gugino SF, et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res. 2008;102(2):226–33.PubMedPubMedCentralCrossRefGoogle Scholar
- 97.Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin 3rd FC, et al. Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res. 2006;59(1):137–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 98.Ivy DD, Parker D, Doran A, Parker D, Kinsella JP, Abman SH. Acute hemodynamic effects and home therapy using a novel pulsed nasal nitric oxide delivery system in children and young adults with pulmonary hypertension. Am J Cardiol. 2003;92(7):886–90.PubMedCrossRefGoogle Scholar
- 99.Mourani PM, Ivy DD, Gao D, Abman SH. Pulmonary vascular effects of inhaled nitric oxide and oxygen tension in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2004;170(9):1006–13.PubMedCrossRefGoogle Scholar
- 100.Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol. 2012;39(1):149–64.PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Bhatt-Mehta V, Donn SM. Sildenafil for pulmonary hypertension complicating bronchopulmonary dysplasia. Expert Rev Clin Pharmacol. 2014;7(4):393–5.PubMedCrossRefGoogle Scholar
- 102.Konig K, Barfield CP, Guy KJ, Drew SM, Andersen CC. The effect of sildenafil on evolving bronchopulmonary dysplasia in extremely preterm infants: a randomised controlled pilot study. J Matern Fetal Neonatal Med. 2014;27(5):439–44.PubMedCrossRefGoogle Scholar
- 103.Mourani PM, Sontag MK, Ivy DD, Abman SH. Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J Pediatr. 2009;154(3):379–84, 84 e1–2.Google Scholar
- 104.Nyp M, Sandritter T, Poppinga N, Simon C, Truog WE. Sildenafil citrate, bronchopulmonary dysplasia and disordered pulmonary gas exchange: any benefits? J Perinatol. 2012;32(1): 64–9.PubMedCrossRefGoogle Scholar
- 105.Barst RJ, Ivy DD, Gaitan G, Szatmari A, Rudzinski A, Garcia AE, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation. 2012;125(2):324–34.PubMedCrossRefGoogle Scholar
- 106.Berkelhamer SK, Mestan KK, Steinhorn RH. Pulmonary hypertension in bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):124–31.PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Rosenzweig EB, Ivy DD, Widlitz A, Doran A, Claussen LR, Yung D, et al. Effects of long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol. 2005;46(4):697–704.PubMedCrossRefGoogle Scholar
- 108.Wilkins MR, Paul GA, Strange JW, Tunariu N, Gin-Sing W, Banya WA, et al. Sildenafil versus endothelin receptor antagonist for pulmonary hypertension (SERAPH) study. Am J Respir Crit Care Med. 2005;171(11):1292–7.PubMedCrossRefGoogle Scholar
- 109.Ivy DD, Rosenzweig EB, Lemarie JC, Brand M, Rosenberg D, Barst RJ. Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings. Am J Cardiol. 2010;106(9):1332–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Hislop AA, Moledina S, Foster H, Schulze-Neick I, Haworth SG. Long-term efficacy of bosentan in treatment of pulmonary arterial hypertension in children. Eur Respir J. 2011; 38(1):70–7.PubMedCrossRefGoogle Scholar
- 111.Mohamed WA, Ismail M. A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol. 2012;32(8):608–13.PubMedCrossRefGoogle Scholar
- 112.Beghetti M. Current treatment options in children with pulmonary arterial hypertension and experiences with oral bosentan. Eur J Clin Invest. 2006;36 Suppl 3:16–24.PubMedCrossRefGoogle Scholar
- 113.Maiya S, Hislop AA, Flynn Y, Haworth SG. Response to bosentan in children with pulmonary hypertension. Heart. 2006;92(5):664–70.PubMedPubMedCentralCrossRefGoogle Scholar
- 114.Krishnan U, Krishnan S, Gewitz M. Treatment of pulmonary hypertension in children with chronic lung disease with newer oral therapies. Pediatr Cardiol. 2008;29(6):1082–6.PubMedCrossRefGoogle Scholar
- 115.Rugolotto S, Errico G, Beghini R, Ilic S, Richelli C, Padovani EM. Weaning of epoprostenol in a small infant receiving concomitant bosentan for severe pulmonary arterial hypertension secondary to bronchopulmonary dysplasia. Minerva Pediatr. 2006;58(5):491–4.PubMedGoogle Scholar
- 116.Baker CD, Abman SH, Mourani PM. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Pediatr Allergy Immunol Pulmonol. 2014;27(1):8–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Brown AT, Gillespie JV, Miquel-Verges F, Holmes K, Ravekes W, Spevak P, et al. Inhaled epoprostenol therapy for pulmonary hypertension: Improves oxygenation index more consistently in neonates than in older children. Pulm Circ. 2012;2(1):61–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Melnick L, Barst RJ, Rowan CA, Kerstein D, Rosenzweig EB. Effectiveness of transition from intravenous epoprostenol to oral/inhaled targeted pulmonary arterial hypertension therapy in pediatric idiopathic and familial pulmonary arterial hypertension. Am J Cardiol. 2010;105(10):1485–9.PubMedCrossRefGoogle Scholar
- 119.Ewert R, Schaper C, Halank M, Glaser S, Opitz CF. Inhalative iloprost – pharmacology and clinical application. Expert Opin Pharmacother. 2009;10(13):2195–207.PubMedCrossRefGoogle Scholar
- 120.Doran AK, Ivy DD, Barst RJ, Hill N, Murali S, Benza RL, et al. Guidelines for the prevention of central venous catheter-related blood stream infections with prostanoid therapy for pulmonary arterial hypertension. Int J Clin Pract Suppl. 2008;160:5–9.PubMedCrossRefGoogle Scholar
- 121.Levy M, Celermajer DS, Bourges-Petit E, Del Cerro MJ, Bajolle F, Bonnet D. Add-on therapy with subcutaneous treprostinil for refractory pediatric pulmonary hypertension. J Pediatr. 2011;158(4):584–8.PubMedCrossRefGoogle Scholar
- 122.Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R, et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN study group. Pediatrics. 1998;101(3 Pt 1):325–34.PubMedCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2016