Advertisement

Pulmonary Hypertension in Bronchopulmonary Dysplasia

  • Charitharth Vivek LalEmail author
  • Namasivayam Ambalavanan
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Pulmonary hypertension (PH) is increasingly recognized as a complication of bronchopulmonary dysplasia (BPD) and is associated with increased morbidity, mortality, and healthcare expenditure. Despite many recent clinical advances, pulmonary vascular disease (PVD) remains an important contributor to poor outcomes in BPD. Understanding the relationship between BPD and PH and identifying optimal therapies may help minimize morbidity and improve outcomes.

Keywords

Pulmonary hypertension Bronchopulmonary dysplasia Infant Premature Hypertension Pulmonary Inhaled nitric oxide Sildenafil 

References

  1. 1.
    Ambalavanan N, Carlo WA. Bronchopulmonary dysplasia: new insights. Clin Perinatol. 2004;31(3):613–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):179–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7): 357–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonikos DS, Bensch KG, Northway Jr WH, Edwards DK. Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol. 1976;7(6):643–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Mourani PM, Abman SH. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr. 2013;25(3):329–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Steinhorn RH, Kinsella JP, Abman SH. Beyond pulmonary hypertension: sildenafil for chronic lung disease of prematurity. Am J Respir Cell Mol Biol. 2013;48(2):3–5.CrossRefGoogle Scholar
  7. 7.
    Haworth SG. The management of pulmonary hypertension in children. Arch Dis Child. 2008;93(7):620–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    An HS, Bae EJ, Kim GB, Kwon BS, Beak JS, Kim EK, et al. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J. 2010;40(3):131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kim DH, Kim HS, Choi CW, Kim EK, Kim BI, Choi JH. Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology. 2012;101(1):40–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics. 2007;120(6):1260–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Slaughter JL, Pakrashi T, Jones DE, South AP, Shah TA. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J Perinatol. 2011;31(10):635–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics. 2012;129(3):e682–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ali Z, Schmidt P, Dodd J, Jeppesen DL. Predictors of bronchopulmonary dysplasia and pulmonary hypertension in newborn children. Dan Med J. 2013;60(8):A4688.PubMedGoogle Scholar
  14. 14.
    Mourani PM, Sontag MK, Younoszai A, Miller JI, Kinsella JP, Baker CD, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;191(1):87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ambalavanan N, Walsh M, Bobashev G, Das A, Levine B, Carlo WA, et al. Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants. Pediatrics. 2011;127(1):e106–16.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Check J, Gotteiner N, Liu X, Su E, Porta N, Steinhorn R, et al. Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J Perinatol. 2013;33(7):553–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hansen AR, Barnes CM, Folkman J, McElrath TF. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr. 2010;156(4):532–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Collaco JM, Romer LH, Stuart BD, Coulson JD, Everett AD, Lawson EE, et al. Frontiers in pulmonary hypertension in infants and children with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(11):1042–53.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Abman SH. Monitoring cardiovascular function in infants with chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed. 2002;87(1):F15–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pulmonary hypertension in infants with bronchopulmonary dysplasia. Korean J Pediatr. 2010;53(6):688–93.Google Scholar
  21. 21.
    Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med. 1999;160(4):1333–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Grover TR, Parker TA, Balasubramaniam V, Markham NE, Abman SH. Pulmonary hypertension impairs alveolarization and reduces lung growth in the ovine fetus. Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L648–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell. 2011;147(3): 539–53.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Peng T, Tian Y, Boogerd CJ, Lu MM, Kadzik RS, Stewart KM, et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature. 2013;500(7464):589–92.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Adv Exp Med Biol. 2010;661:323–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, et al. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383(6595):73–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One. 2013;8(9):e74686.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239–47.PubMedGoogle Scholar
  32. 32.
    Schwarz M, Lee M, Zhang F, Zhao J, Jin Y, Smith S, et al. EMAP II: a modulator of neovascularization in the developing lung. Am J Physiol. 1999;276(2 Pt 1):L365–75.PubMedGoogle Scholar
  33. 33.
    Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev. 2000;95(1–2):123–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Schwarz MA, Zhang F, Lane JE, Schachtner S, Jin Y, Deutsch G, et al. Angiogenesis and morphogenesis of murine fetal distal lung in an allograft model. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L1000–7.PubMedGoogle Scholar
  35. 35.
    Schwarz MA, Wan Z, Liu J, Lee MK. Epithelial-mesenchymal interactions are linked to neovascularization. Am J Respir Cell Mol Biol. 2004;30(6):784–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatr Res. 2013;73(3):252–62.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Iosef C, Alastalo TP, Hou Y, Chen C, Adams ES, Lyu SC, et al. Inhibiting NF-kappaB in the developing lung disrupts angiogenesis and alveolarization. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1023–36.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cornfield DN. Developmental regulation of oxygen sensing and ion channels in the pulmonary vasculature. Adv Exp Med Biol. 2010;661:201–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsao PN, Wei SC. Prenatal hypoxia downregulates the expression of pulmonary vascular endothelial growth factor and its receptors in fetal mice. Neonatology. 2013;103(4):300–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Vadivel A, Alphonse RS, Etches N, van Haaften T, Collins JJ, O’Reilly M, et al. Hypoxia inducible factors promotes alveolar development and regeneration. Am J of Respir Cell Mol Biol. 2014;50(1):96–105.Google Scholar
  41. 41.
    van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    O’Reilly M, Thebaud B. Cell-based strategies to reconstitute lung function in infants with severe bronchopulmonary dysplasia. Clin Perinatol. 2012;39(3):703–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res. 2006;312(5):630–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem. 1998;273(29):18514–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY. Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res. 1999;58(3):224–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112(16):2477–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27(12):552–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Reis M, Liebner S. Wnt signaling in the vasculature. Exp Cell Res. 2013;319(9):1317–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Goodwin AM, D’Amore PA. Wnt signaling in the vasculature. Angiogenesis. 2002;5(1–2):1–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Kazanskaya O, Ohkawara B, Heroult M, Wu W, Maltry N, Augustin HG, et al. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. Development. 2008;135(22):3655–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Cornett B, Snowball J, Varisco BM, Lang R, Whitsett J, Sinner D. Wntless is required for peripheral lung differentiation and pulmonary vascular development. Dev Biol. 2013;379(1):38–52.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mujahid S, Nielsen HC, Volpe MV. MiR-221 and miR-130a regulate lung airway and vascular development. PLoS One. 2013;8(2):e55911.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Han RN, Babaei S, Robb M, Lee T, Ridsdale R, Ackerley C, et al. Defective lung vascular development and fatal respiratory distress in endothelial NO synthase-deficient mice: a model of alveolar capillary dysplasia? Circ Res. 2004;94(8):1115–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Tulloh RM, Hislop AA, Boels PJ, Deutsch J, Haworth SG. Chronic hypoxia inhibits postnatal maturation of porcine intrapulmonary artery relaxation. Am J Physiol. 1997;272(5 Pt 2):H2436–45.PubMedGoogle Scholar
  58. 58.
    Han RN, Stewart DJ. Defective lung vascular development in endothelial nitric oxide synthase-deficient mice. Trends Cardiovasc Med. 2006;16(1):29–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Shaul PW. Nitric oxide in the developing lung. Adv Pediatr. 1995;42:367–414.PubMedGoogle Scholar
  60. 60.
    Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin 3rd FC. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol. 1997;272(5 Pt 1):L1005–12.PubMedGoogle Scholar
  61. 61.
    Sherman TS, Chen Z, Yuhanna IS, Lau KS, Margraf LR, Shaul PW. Nitric oxide synthase isoform expression in the developing lung epithelium. Am J Physiol. 1999;276(2 Pt 1):L383–90.PubMedGoogle Scholar
  62. 62.
    Shaul PW, Afshar S, Gibson LL, Sherman TS, Kerecman JD, Grubb PH, et al. Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am J Physiol Lung Cell Mol Physiol. 2002;283(6):L1192–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Afshar S, Gibson LL, Yuhanna IS, Sherman TS, Kerecman JD, Grubb PH, et al. Pulmonary NO synthase expression is attenuated in a fetal baboon model of chronic lung disease. Am J Physiol Lung Cell Mol Physiol. 2003;284(5):L749–58.PubMedCrossRefGoogle Scholar
  64. 64.
    Steinhorn RH, Shaul PW, de Regnier RA, Kennedy KA. Inhaled nitric oxide and bronchopulmonary dysplasia. Pediatrics. 2011;128(1):e255–6. Author reply e6–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Kumar VH, Hutchison AA, Lakshminrusimha S, Morin 3rd FC, Wynn RJ, Ryan RM. Characteristics of pulmonary hypertension in preterm neonates. J Perinatol. 2007;27(4): 214–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, et al. Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res. 2006;99(9):951–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, et al. The FGF system has a key role in regulating vascular integrity. J Clin Invest. 2008;118(10):3355–66.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Borghesi A, Massa M, Campanelli R, Garofoli F, Longo S, Cabano R, et al. Different subsets of circulating angiogenic cells do not predict bronchopulmonary dysplasia or other diseases of prematurity in preterm infants. Int J Immunopathol Pharmacol. 2013;26(3):809–16.PubMedGoogle Scholar
  69. 69.
    Mammoto T, Jiang E, Jiang A, Mammoto A. ECM structure and tissue stiffness control postnatal lung development through the LRP5-Tie2 signaling system. Am J Respir Cell Mol Biol. 2013;49(6):1009–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee HJ, Lee YJ, Choi CW, Lee JA, Kim EK, Kim HS, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, restores alveolar and pulmonary vascular development in a rat model of bronchopulmonary dysplasia. Yonsei Med J. 2014;55(1): 99–106.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Breinholt JP, Hawkins JA, Minich LA, Tani LY, Orsmond GS, Ritter S, et al. Pulmonary vein stenosis with normal connection: associated cardiac abnormalities and variable outcome. Ann Thorac Surg. 1999;68(1):164–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Drossner DM, Kim DW, Maher KO, Mahle WT. Pulmonary vein stenosis: prematurity and associated conditions. Pediatrics. 2008;122(3):e656–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Mourani PM, Ivy DD, Rosenberg AA, Fagan TE, Abman SH. Left ventricular diastolic dysfunction in bronchopulmonary dysplasia. J Pediatr. 2008;152(2):291–3.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Newth CJ, Gow RM, Rowe RD. The assessment of pulmonary arterial pressures in bronchopulmonary dysplasia by cardiac catheterization and M-mode echocardiography. Pediatr Pulmonol. 1985;1(1):58–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH. Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics. 2008;121(2):317–25.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Skinner JR, Stuart AG, O’Sullivan J, Heads A, Boys RJ, Hunter S. Right heart pressure determination by Doppler in infants with tricuspid regurgitation. Arch Dis Child. 1993;69(2):216–20.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hill KD, Lim DS, Everett AD, Ivy DD, Moore JD. Assessment of pulmonary hypertension in the pediatric catheterization laboratory: current insights from the Magic registry. Catheter Cardiovasc Interv. 2010;76(6):865–73.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ambalavanan N, Mourani P. Pulmonary hypertension in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):240–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Taylor CJ, Derrick G, McEwan A, Haworth SG, Sury MR. Risk of cardiac catheterization under anaesthesia in children with pulmonary hypertension. Br J Anaesth. 2007;98(5): 657–61.PubMedCrossRefGoogle Scholar
  80. 80.
    Shukla AC, Almodovar MC. Anesthesia considerations for children with pulmonary hypertension. Pediatr Crit Care Med. 2010;11(2 Suppl):S70–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Carmosino MJ, Friesen RH, Doran A, Ivy DD. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg. 2007;104(3):521–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    van der Griend BF, Lister NA, McKenzie IM, Martin N, Ragg PG, Sheppard SJ, et al. Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg. 2011;112(6):1440–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Gorenflo M, Gu H, Xu Z. Peri-operative pulmonary hypertension in paediatric patients: current strategies in children with congenital heart disease. Cardiology. 2010;116(1):10–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Doull IJ, Mok Q, Tasker RC. Tracheobronchomalacia in preterm infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 1997;76(3):F203–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Del Cerro MJ, Sabate Rotes A, Carton A, Deiros L, Bret M, Cordeiro M, et al. Pulmonary hypertension in bronchopulmonary dysplasia: clinical findings, cardiovascular anomalies and outcomes. Pediatr Pulmonol. 2014;49(1):49–59.Google Scholar
  86. 86.
    Kim GB. Pulmonary hypertension in infants with bronchopulmonary dysplasia. Korean J Pediatr. 2010;53(6):688–93.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kim JS, Shim EJ. B-type natriuretic peptide assay for the diagnosis and prognosis of patent ductus arteriosus in preterm infants. Korean Circ J. 2012;42(3):192–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sanjeev S, Pettersen M, Lua J, Thomas R, Shankaran S, L’Ecuyer T. Role of plasma B-type natriuretic peptide in screening for hemodynamically significant patent ductus arteriosus in preterm neonates. J Perinatol. 2005;25(11):709–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Cuna A, Kandasamy J, Sims B. B-type natriuretic peptide and mortality in extremely low birth weight infants with pulmonary hypertension: a retrospective cohort analysis. BMC Pediatr. 2014;14:68.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Farquhar M, Fitzgerald DA. Pulmonary hypertension in chronic neonatal lung disease. Paediatr Respir Rev. 2010;11(3):149–53.PubMedCrossRefGoogle Scholar
  91. 91.
    Berman Jr W, Yabek SM, Dillon T, Burstein R, Corlew S. Evaluation of infants with bronchopulmonary dysplasia using cardiac catheterization. Pediatrics. 1982;70(5):708–12.PubMedGoogle Scholar
  92. 92.
    Hudak BB, Allen MC, Hudak ML, Loughlin GM. Home oxygen therapy for chronic lung disease in extremely low-birth-weight infants. Am J Dis Child. 1989;143(3):357–60.PubMedGoogle Scholar
  93. 93.
    Fleck BW, Stenson BJ. Retinopathy of prematurity and the oxygen conundrum: lessons learned from recent randomized trials. Clin Perinatol. 2013;40(2):229–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Abman SH, Wolfe RR, Accurso FJ, Koops BL, Bowman CM, Wiggins Jr JW. Pulmonary vascular response to oxygen in infants with severe bronchopulmonary dysplasia. Pediatrics. 1985;75(1):80–4.PubMedGoogle Scholar
  95. 95.
    Farrow KN, Wedgwood S, Lee KJ, Czech L, Gugino SF, Lakshminrusimha S, et al. Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol. 2010;174(3):272–81.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Farrow KN, Groh BS, Schumacker PT, Lakshminrusimha S, Czech L, Gugino SF, et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res. 2008;102(2):226–33.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin 3rd FC, et al. Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res. 2006;59(1):137–41.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ivy DD, Parker D, Doran A, Parker D, Kinsella JP, Abman SH. Acute hemodynamic effects and home therapy using a novel pulsed nasal nitric oxide delivery system in children and young adults with pulmonary hypertension. Am J Cardiol. 2003;92(7):886–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Mourani PM, Ivy DD, Gao D, Abman SH. Pulmonary vascular effects of inhaled nitric oxide and oxygen tension in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2004;170(9):1006–13.PubMedCrossRefGoogle Scholar
  100. 100.
    Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol. 2012;39(1):149–64.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bhatt-Mehta V, Donn SM. Sildenafil for pulmonary hypertension complicating bronchopulmonary dysplasia. Expert Rev Clin Pharmacol. 2014;7(4):393–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Konig K, Barfield CP, Guy KJ, Drew SM, Andersen CC. The effect of sildenafil on evolving bronchopulmonary dysplasia in extremely preterm infants: a randomised controlled pilot study. J Matern Fetal Neonatal Med. 2014;27(5):439–44.PubMedCrossRefGoogle Scholar
  103. 103.
    Mourani PM, Sontag MK, Ivy DD, Abman SH. Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J Pediatr. 2009;154(3):379–84, 84 e1–2.Google Scholar
  104. 104.
    Nyp M, Sandritter T, Poppinga N, Simon C, Truog WE. Sildenafil citrate, bronchopulmonary dysplasia and disordered pulmonary gas exchange: any benefits? J Perinatol. 2012;32(1): 64–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Barst RJ, Ivy DD, Gaitan G, Szatmari A, Rudzinski A, Garcia AE, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation. 2012;125(2):324–34.PubMedCrossRefGoogle Scholar
  106. 106.
    Berkelhamer SK, Mestan KK, Steinhorn RH. Pulmonary hypertension in bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rosenzweig EB, Ivy DD, Widlitz A, Doran A, Claussen LR, Yung D, et al. Effects of long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol. 2005;46(4):697–704.PubMedCrossRefGoogle Scholar
  108. 108.
    Wilkins MR, Paul GA, Strange JW, Tunariu N, Gin-Sing W, Banya WA, et al. Sildenafil versus endothelin receptor antagonist for pulmonary hypertension (SERAPH) study. Am J Respir Crit Care Med. 2005;171(11):1292–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Ivy DD, Rosenzweig EB, Lemarie JC, Brand M, Rosenberg D, Barst RJ. Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings. Am J Cardiol. 2010;106(9):1332–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hislop AA, Moledina S, Foster H, Schulze-Neick I, Haworth SG. Long-term efficacy of bosentan in treatment of pulmonary arterial hypertension in children. Eur Respir J. 2011; 38(1):70–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Mohamed WA, Ismail M. A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol. 2012;32(8):608–13.PubMedCrossRefGoogle Scholar
  112. 112.
    Beghetti M. Current treatment options in children with pulmonary arterial hypertension and experiences with oral bosentan. Eur J Clin Invest. 2006;36 Suppl 3:16–24.PubMedCrossRefGoogle Scholar
  113. 113.
    Maiya S, Hislop AA, Flynn Y, Haworth SG. Response to bosentan in children with pulmonary hypertension. Heart. 2006;92(5):664–70.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Krishnan U, Krishnan S, Gewitz M. Treatment of pulmonary hypertension in children with chronic lung disease with newer oral therapies. Pediatr Cardiol. 2008;29(6):1082–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Rugolotto S, Errico G, Beghini R, Ilic S, Richelli C, Padovani EM. Weaning of epoprostenol in a small infant receiving concomitant bosentan for severe pulmonary arterial hypertension secondary to bronchopulmonary dysplasia. Minerva Pediatr. 2006;58(5):491–4.PubMedGoogle Scholar
  116. 116.
    Baker CD, Abman SH, Mourani PM. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Pediatr Allergy Immunol Pulmonol. 2014;27(1):8–16.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Brown AT, Gillespie JV, Miquel-Verges F, Holmes K, Ravekes W, Spevak P, et al. Inhaled epoprostenol therapy for pulmonary hypertension: Improves oxygenation index more consistently in neonates than in older children. Pulm Circ. 2012;2(1):61–6.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Melnick L, Barst RJ, Rowan CA, Kerstein D, Rosenzweig EB. Effectiveness of transition from intravenous epoprostenol to oral/inhaled targeted pulmonary arterial hypertension therapy in pediatric idiopathic and familial pulmonary arterial hypertension. Am J Cardiol. 2010;105(10):1485–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Ewert R, Schaper C, Halank M, Glaser S, Opitz CF. Inhalative iloprost – pharmacology and clinical application. Expert Opin Pharmacother. 2009;10(13):2195–207.PubMedCrossRefGoogle Scholar
  120. 120.
    Doran AK, Ivy DD, Barst RJ, Hill N, Murali S, Benza RL, et al. Guidelines for the prevention of central venous catheter-related blood stream infections with prostanoid therapy for pulmonary arterial hypertension. Int J Clin Pract Suppl. 2008;160:5–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Levy M, Celermajer DS, Bourges-Petit E, Del Cerro MJ, Bajolle F, Bonnet D. Add-on therapy with subcutaneous treprostinil for refractory pediatric pulmonary hypertension. J Pediatr. 2011;158(4):584–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R, et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN study group. Pediatrics. 1998;101(3 Pt 1):325–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Charitharth Vivek Lal
    • 1
    • 2
    • 3
    Email author
  • Namasivayam Ambalavanan
    • 1
    • 2
    • 3
  1. 1.Division of Neonatology, Department of PediatricsUniversity of AlabamaBirminghamUSA
  2. 2.Women and Infant Center, University of AlabamaBirminghamUSA
  3. 3.Childrens Hospital of AlabamaBirminghamUSA

Personalised recommendations