Advertisement

Oxygen Modulation and Bronchopulmonary Dysplasia: Delivery Room and Beyond

  • Isabel Torres-Cuevas
  • María Cernada
  • Antonio Nuñez
  • Maximo VentoEmail author
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Low oxygen concentration in utero drives lung vascular and alveolar development. Preterm birth implies an abrupt increase in the availability of oxygen to tissue. As a consequence, transcription factors responsible to activate genes that promote vascular growth and alveolar development will be downregulated causing impairment in lung development and subsequent respiratory insufficiency. Therefore, preterm infants, especially those <32 weeks gestation, will need positive pressure ventilation and oxygen supplementation immediately after birth and thereafter in the neonatal intensive care unit (NICU). In addition, preterm infants are endowed with an immature antioxidant defense system which predisposes to oxidative stress that will cause structural and functional damage and inflammation finally leading to bronchopulmonary dysplasia (BPD). Herewith, this chapter summarizes the present recommendations for oxygen supplementation aiming to reducing one of the essential factors contributing to the development and severity of this condition.

Keywords

Bronchopulmonary dysplasia Oxygen Oxidative stress Pulseoximetry Reactive oxygen species Resuscitation Oxygen saturation range 

References

  1. 1.
    Vento M, Cheung PY, Aguar M. The first golden minutes of the extremely-low-gestational-age neonate: a gentle approach. Neonatology. 2009;95:286–98.CrossRefPubMedGoogle Scholar
  2. 2.
    García-Muñoz Rodrigo F, Díez Recinos A, García-Alix Pérez A, et al. Changes in perinatal care and outcomes in newborns at the limit of viability in Spain: the EPI-SEN study. Neonatology. 2015;107:120–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Bhandari A, Bhandari V. Pathogenesis and pathophysiology of pulmonary sequelae of bronchopulmonary dysplasia in premature infants. Front Biosci. 2003;8:e370–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Role of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175: 978–85.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Abman SH, Conway SJ. Developmental determinants and changing patterns of respiratory outcomes after preterm birth. Birth Defects Res A Clin Mol Teratol. 2014;100:811.CrossRefGoogle Scholar
  6. 6.
    Baker CD, Abman SH. Impaired pulmonary vascular development in bronchopulmonary dysplasia. Neonatology. 2015;107:344–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Vento M, Lista GL. Managing preterm in the first minutes of life. Paediatr Respir Rev. 2015 Mar 11. doi: 10.1016/j.prrv.2015.02.004. (Epub ahead of print).Google Scholar
  8. 8.
    Buczynski BW, Maduerkwe ET, O’Reilly MA. The role of hyperoxia in the pathogenesis of experimental BPD. Semin Perinatol. 2013;37:69–78.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vento M. Oxygen supplementation in the neonatal period: changing the paradigm. Neonatology. 2014;105:323–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1:244–57.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jones DP, Go YM, Anderson CL, et al. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J. 2004;18:1246–8.PubMedGoogle Scholar
  12. 12.
    Jones DP. Redox sensing: orthogonal control in cell cycle and apoptosis signalling. J Intern Med. 2010;268:432–48.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jones DP, Sies H. The redox code. Antioxid Redox Signal. 2015;23:734–46.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maltepe E, Saugstad OD. Oxygen in health and disease: regulation of oxygen homeostasis-clinical implications. Pediatr Res. 2009;65:261–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15:191–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30:42–59.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vento M, Aguar M, Escobar J, Arduini A, Escrig R, Brugada M, Izquierdo I, Asensi MA, Sastre J, Saenz P, Gimeno A. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal. 2009;11:2945–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Dömeloff M. Nutritional care of premature infants: microminerals. World Rev Nutr Diet. 2014;110:121–39.CrossRefGoogle Scholar
  19. 19.
    Belik J, Gonzalez-Luis GE, Perez-Vizcaino F, Villamor E. Isoprostanes in fetal and neonatal health and disease. Free Radic Biol Med. 2010;48:177–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Milne GL, Dai Q, Roberts 2nd LJ. The isoprostanes-25 years later. Biochim Biophys Acta. 1851;2015:433–45.Google Scholar
  21. 21.
    Saugstad OD, Sejersted Y, Solberg R, Wollen EJ, Bjørås M. Oxygenation of the newborn: a molecular approach. Neonatology. 2012;101(4):315–25.Google Scholar
  22. 22.
    Madurga A, Mizikova I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2013;305:L893–905.CrossRefPubMedGoogle Scholar
  23. 23.
    Vento M, Teramo K. Evaluating the fetus at risk for cardiopulmonary compromise. Semin Fetal Neonatal Med. 2013;18:324–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Roan E, Wilhelm K, Bada A, Makena PS, Gorantla VK, Sinclair SE, Waters CM. Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2012;302:L1235–41.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cho HY, van Houten B, Wang X, Miller-DeGraff L, Fostel J, Gladwell W, Perrow L, Panduri V, Kobzik L, Yamamoto M, Bell DA, Kleeberger SR. Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice. Antioxid Redox Signal. 2012;17:1066–82.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Masood A, Belcastro R, Li J, Kantores C, Jankov RP, Tanswell AK. A peroxynitrite decomposition catalyst prevents 60% O2-mediated rat chronic neonatal lung injury. Free Radic Biol Med. 2010;49:1182–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH. Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal. 2013;18:1765–76.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yi M, Masood A, Ziino A, Johnson BH, Belcastro R, Li J, Shek S, Kantores C, Jankov RP, Tanswell AK. Inhibition of apoptosis by 60% oxygen: a novel pathway contributing to lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2011;300:L319–29.CrossRefPubMedGoogle Scholar
  29. 29.
    Hartman WR, Smelter DF, Sathish V, Karass M, Kim S, Aravamudan B, Thompson MA, Amrani Y, Pandya HC, Martin RJ, Prakash YS, Pabelick CM. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L711–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dawson JA, Kamlin CO, Vento M, Wong C, Cole TJ, Donath SM, Davis PG, Morley CJ. Defining the reference range for oxygen saturation for infants after birth. Pediatrics. 2010;125:e1340–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Perlman JM, Wyllie J, Kattwinkel J, et al. Part 11: Neonatal resuscitation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2010;122:S516–38.CrossRefPubMedGoogle Scholar
  32. 32.
    Vento M, Cubells E, Escobar JJ, Escrig R, Aguar M, Brugada M, Cernada M, Saénz P, Izquierdo I. Oxygen saturation after birth in preterm infants treated with continuous positive airway pressure and air: assessment of gender differences and comparison with a published nomogram. Arch Dis Child Fetal Neonatal Ed. 2013;98:F228–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Hooper SB, Polglase GR, Roehr CC. Cardiopulmonary changes with aeration of the newborn lung. Paediatr Respir Rev. 2015 Mar 17. pii: S1526-0542(15)00028-7. doi:  10.1016/j.prrv.2015.03.003. (Epub ahead of print).Google Scholar
  34. 34.
    Baenziger O, Stolkin F, Keel M, von Siebenthal K, Fauchere JC, Das Kundu S, Dietz V, Bucher HU, Wolf M. The influence of timing of cord clamping on postnatal cerebral oxygenation in preterm neonates: a randomized controlled trial. Pediatrics. 2007;119:445–59.CrossRefGoogle Scholar
  35. 35.
    Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, Saugstad OD, Simeoni U, Speer CP, Vento M, Halliday HL. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2013 update. Neonatology. 2013;103:353–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics. 2001;107:642–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Vento M, Asensi M, Sastre J, Lloret A, García-Sala F, Viña J. Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr. 2003;142:240–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Vento M, Sastre J, Asensi MA, Viña J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang CL, Anderson C, Leone TA, Rich W, Govindaswami B, Finer NN. Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics. 2008;121:1083–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Dawson JA, Kamlin CO, Wong C, te Pas AB, O’Donnell CP, Donath SM, Davis PG, Morley CJ. Oxygen saturation and heart rate during delivery room resuscitation of infants <30 weeks’ gestation with air or 100% oxygen. Arch Dis Child Fetal Neonatal Ed. 2009;94:F87–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Escrig R, Arruza L, Izquierdo I, Villar G, Sáenz P, Gimeno A, Moro M, Vento M. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics. 2008;121:875–81.CrossRefPubMedGoogle Scholar
  42. 42.
    Vento M, Moro M, Escrig R, Arruza L, Villar G, Izquierdo I, Roberts 2nd LJ, Arduini A, Escobar JJ, Sastre J, Asensi MA. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics. 2009;124:e439–49.CrossRefPubMedGoogle Scholar
  43. 43.
    Ezaki S, Suzuki K, Kurishima C, Miura M, Weilin W, Hoshi R, Tanitsu S, Tomita Y, Takayama C, Wada M, Kondo T, Tamura M. Resuscitation of preterm infants with reduced oxygen results in less oxidative stress than resuscitation with 100% oxygen. J Clin Biochem Nutr. 2009;44:111–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Stola A, Schulman J, Perlman J. Initiating delivery room stabilization/resuscitation in very low birth weight (VLBW) infants with an FiO2 less than 100% is feasible. J Perinatol. 2009;29: 548–52.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kapadia VS, Chalak LF, Sparks JE, Allen JR, Savani RC, Wyckoff MH. Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics. 2013;132:e1488–96.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brown JVE, Moe-Byrne T, Harden M, Mc-Guire W. Lower versus higher oxygen concentration for delivery room stabilisation of preterm neonates: systematic review. PLoS One. 2013;7:e52033.CrossRefGoogle Scholar
  47. 47.
    Saugstad OD, Aune D, Aguar M, Kapadia V, Finer N, Vento M. Resuscitation of premature infants with low or high oxygen. A systematic review and meta-analysis. Acta Paediatr. 2014;103:744–51.PubMedGoogle Scholar
  48. 48.
    Oei JL, Lui K, Wright IM, Craven P, Saugstad OD, Coates E, Tarnow-Mordi WO. Targeted oxygen in the resuscitation of preterm infants and their developmental outcomes (To2rpido): a randomised controlled study. EPAS. 2015;751387.Google Scholar
  49. 49.
    Di Fiore JM, Kaffashi F, Loparo K, Sattar A, Luchter M, et al. The relationship between patterns of intermittent hypoxia and retinopathy of prematurity in preterm infants. Pediatr Res. 2012;72:606–12.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhou D, Haddad GG. Genetic analysis of hypoxia tolerance and susceptibility in Droshophila and humans. Annu Rev Gen Hum Gen. 2013;14:25–43.CrossRefGoogle Scholar
  51. 51.
    Askie LM, Brocklehurst P, Darlow BA, Finer N, Schmidt B, Tarnow-Mordi W, NeOProM Collaborative Group. NeOProM: neonatal oxygenation prospective meta-analysis collaboration study protocol. BMC Pediatr. 2011;11:6.PubMedPubMedCentralGoogle Scholar
  52. 52.
    SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362:1959–69.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    BOOST II United Kingdom Collaborative Group, BOOST II Australia Collaborative Group, BOOST II New Zealand Collaborative Group, Stenson BJ, Tarnow-Mordi WO, Darlow BA, Simes J, Juszczak E, Askie L, et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368:2094–104.CrossRefGoogle Scholar
  54. 54.
    Schmidt R, Whyte RK, Asztalos EV, Modemann D, Poets C, Rabi Y, Solimano A, Roberts RS, Canadian Oxygen Trial (COT) Group. Effects of targeting higher vs. lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013;309:2111–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Saugstad OD, Dagfinn A. Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology. 2014;105: 55–63.CrossRefPubMedGoogle Scholar
  56. 56.
    Di Fiore JM, Walsh M, Wrage L, Rich W, Finer N, Carlo WA, Martin RJ, SUPPORT Study Group of Eunice Kennedy-Shriver National Institute of Child Health and Human Development Neonatal Research Network. Low oxygen saturation target range is associated with increased incidence of intermittent hypoxemia. J Pediatr. 2012;161:1047–52.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rosychuk RJ, Hudson-Mason A, Eklund D, Lacaze-Masmonteil T. Discrepancies between arterial oxygen saturation and functional oxygen saturation measured with pulse oximetry in very preterm infants. Neonatology. 2012;101:14–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92:967–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2015;169:332–40.CrossRefPubMedGoogle Scholar
  60. 60.
    Bizzarro MJ, Li FY, Katz K, Shabanova V, Ehrenkranz RA, Bhandari V. Temporal quantification of oxygen saturation ranges: an effort to reduce hyperoxia in the neonatal intensive care unit. J Perinatol. 2014;34:33–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Sola A, Golombek SG, Montes Bueno MT, Lemus-Varela L, Zuluaga C, Domínguez F, Baquero H, Young Sarmiento AE, Natta D, Rodriguez Perez JM, Deulofeut R, Quiroga A, Flores GL, Morgues M, Pérez AG, Van Overmeire B, van Bel F. Safe oxygen saturation targeting and monitoring in preterm infants: can we avoid hypoxia and hyperoxia? Acta Paediatr. 2014;103:1009–18.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lakshminrusimha S, Manja V, Mathew B, Suresh GK. Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol. 2015;35:8–15.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hagadorn JI, Furey AM, Nghiem TH, et al. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks’ gestation: the AVIOx study. Pediatrics. 2006;118:1574–82.CrossRefPubMedGoogle Scholar
  64. 64.
    Clucas L, Doyle LW, Dawson J, Donath S, Davis PG. Compliance with alarm limits for pulse oximetry in very preterm infants. Pediatrics. 2007;119:1056–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Laptook AR, Salhab W, Allen J, Saha S, Walsh M. Pulse oximetry in very low birth weight infants: can oxygen saturation be maintained in the desired range? J Perinatol. 2006;26:337–41.CrossRefPubMedGoogle Scholar
  66. 66.
    Claure N, Bancalari E. Closed-loop control of inspired oxygen in premature infants. Semin Fetal Neonatal Med. 2015;20:198–204.CrossRefPubMedGoogle Scholar
  67. 67.
    Hallenberger A, Poets CF, Horn W, Seyfang A, Urschitz MS, CLAC Study Group. Closed-loop automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial. Pediatrics. 2014;133:e379–85.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Isabel Torres-Cuevas
    • 1
  • María Cernada
    • 1
  • Antonio Nuñez
    • 1
  • Maximo Vento
    • 1
    • 2
    Email author
  1. 1.Health Research Institute La Fe, Neonatal Research GroupValenciaSpain
  2. 2.Division of NeonatologyUniversity and Polytechnic Hospital La FeValenciaSpain

Personalised recommendations