Advertisement

Hyperoxia in the Pathogenesis of Bronchopulmonary Dysplasia

  • Anantha K. HarijithEmail author
  • Vineet Bhandari
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

The significant role of hyperoxia in the pathogenesis of bronchopulmonary dysplasia (BPD) is well established, although it is a disease of multifactorial origin. Advances in the management of extreme preterm newborns have increased their survival, though with significant resource utilization and increased costs. Improved survival accompanied a change in the morphology of BPD characterized by alveolar hypoplasia and abnormal vascular organization known as the “new BPD.” Clinical studies have shown that supplemental oxygen is one of the prominent inciting agents for the development of BPD. Exposure of newborn animals to 85–100 % O2 following birth serves as good models of BPD with alveolar simplification. Hyperoxia initially induces focal endothelial cell injury, but, with continued exposure, necrosis of epithelial cells also occurs resulting in impaired lung development. Disruption of lung septation leading to poor development of alveoli results in alveolar simplification leading to BPD. Exposure of premature lungs to hyperoxia results in alteration in angiogenic agents leading to interruption of pulmonary vascular development. Disrupted vascularization adversely impacts alveolar formation. Reactive oxygen species (ROS) is generated upon exposure to hyperoxia. ROS such as the superoxide anion (O2−) reacts with nitric oxide (NO) generated in the vascular endothelium forming peroxynitrite. Hyperoxia triggers increased production of ROS and reactive nitrogen species activating cytotoxic pathways, along with activation of protective pathways such as that of the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2). Activation of cytotoxic pathways triggers release of caspases, matrix metalloproteins, interleukins, and interferon apart from transforming growth factor-β. Activation of sphingolipid pathways under hyperoxia has been shown in animal models to contribute to enhanced production of ROS contributing to neonatal lung injury. Knowledge of mechanisms of ROS production could lead to better understanding of therapeutic targets for BPD.

Keywords

Oxygen Lung injury Newborn Cytokines Antioxidants 

Notes

Acknowledgements

Supported, in part, by grants HL-085103 from the NIH/NHLBI and The Hartwell Foundation to VB.

Conflict of interest None.

References

  1. 1.
    Bhandari V. Drug therapy trials for the prevention of bronchopulmonary dysplasia: current and future targets. Front Pediatr. 2014;2:76. doi: 10.3389/fped.2014.00076. eCollection 2014. PMID: 25121076.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bhandari V. Hyperoxia-derived lung damage in preterm infants. Semin Fetal Neonatal Med. 2010;15(4):223–9. doi: 10.1016/j.siny.2010.03.009. Epub 2010 Apr 28.PMID: 20430708.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Buczynski BW, Yee M, Martin KC, Lawrence BP, O’Reilly MA. Neonatal hyperoxia alters the host response to influenza A virus infection in adult mice through multiple pathways. Am J Physiol Lung Cell Mol Physiol. 2013;305(4):L282–90. doi: 10.1152/ajplung.00112.2013. Epub 2013 Jun 7. PMID: 23748535.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Jobe AH, Kallapur SG. Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med. 2010;15(4):230–5. doi: 10.1016/j.siny.2010.03.007. Epub 2010 May 10. PMID: 20452844.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Velten M, Heyob KM, Rogers LK, Welty SE. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J Appl Physiol (1985). 2010;108(5):1347–56. doi: 10.1152/japplphysiol.01392.2009. Epub 2010 Mar 11. PMID: 20223995.CrossRefGoogle Scholar
  6. 6.
    Deulofeut R, Critz A, Adams-Chapman I, Sola A. Avoiding hyperoxia in infants < or = 1250 g is associated with improved short- and long-term outcomes. J Perinatol. 2006;26(11):700–5. Epub 2006 Oct 12. PMID: 17036032.PubMedCrossRefGoogle Scholar
  7. 7.
    The STOP-ROP Multicenter Study Group. Supplemental therapeutic oxygen for prethreshold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I: Primary outcomes. Pediatrics. 2000;105(2):295–310. PMID: 10654946.Google Scholar
  8. 8.
    Tin W, Milligan DW, Pennefather P, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F106–10. PMID: 11207226.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641–3. PMID: 10590017.PubMedCrossRefGoogle Scholar
  10. 10.
    Abman SH. Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1755–6. PMID: 11734417.PubMedCrossRefGoogle Scholar
  11. 11.
    Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):179–84. PMID: 16860157.PubMedCrossRefGoogle Scholar
  12. 12.
    Bonikos DS, Bensch KG, Northway Jr WH. Oxygen toxicity in the newborn. The effect of chronic continuous 100 percent oxygen exposure on the lungs of newborn mice. Am J Pathol. 1976;85(3):623–50. PMID: 998734.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med. 1999;160(4):1333–46. PMID: 10508826.PubMedCrossRefGoogle Scholar
  14. 14.
    Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L936–47. doi: 10.1152/ajplung.00159.2014. Epub 2014 Oct 10. PMID: 25305249.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Johnston CJ, Wright TW, Reed CK, Finkelstein JN. Comparison of adult and newborn pulmonary cytokine mRNA expression after hyperoxia. Exp Lung Res. 1997;23(6):537–52. PMID: 9358235.PubMedCrossRefGoogle Scholar
  16. 16.
    Frank L. Developmental aspects of experimental pulmonary oxygen toxicity. Free Radic Biol Med. 1991;11(5):463–94. PMID: 1769607.PubMedCrossRefGoogle Scholar
  17. 17.
    Frank L, Bucher JR, Roberts RJ. Oxygen toxicity in neonatal and adult animals of various species. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(5):699–704. PMID: 730565.PubMedGoogle Scholar
  18. 18.
    Clark JM, Lambertsen CJ. Pulmonary oxygen toxicity: a review. Pharmacol Rev. 1971;23(2):37–133. PMID: 4948324.PubMedGoogle Scholar
  19. 19.
    Robinson FR, Casey HW, Weibel ER. Animal model: oxygen toxicity in nonhuman primates. Am J Pathol. 1974;76(1):175–8. PMID: 4210278.PubMedPubMedCentralGoogle Scholar
  20. 20.
    D'Angio CT, Johnston CJ, Wright TW, Reed CK, Finkelstein JN. Chemokine mRNA alterations in newborn and adult mouse lung during acute hyperoxia. Exp Lung Res. 1998;24(5):685–702. PMID: 9779377.PubMedCrossRefGoogle Scholar
  21. 21.
    Bhandari V, Choo-Wing R, Lee CG, Yusuf K, Nedrelow JH, Ambalavanan N, Malkus H, Homer RJ, Elias JA. Developmental regulation of NO-mediated VEGF-induced effects in the lung. Am J Respir Cell Mol Biol. 2008;39(4):420–30. doi: 10.1165/rcmb.2007-0024OC. Epub 2008 Apr 25. PMID: 18441284.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Adamson IY, Bowden DH, Wyatt JP. Oxygen poisoning in mice. Ultrastructural and surfactant studies during exposure and recovery. Arch Pathol. 1970;90(5):463–72. PMID: 5476243.PubMedGoogle Scholar
  23. 23.
    Bowden DH, Adamson IY, Wyatt JP. Reaction of the lung cells to a high concentration of oxygen. Arch Pathol. 1968;86(6):671–5. PMID: 5701641.PubMedGoogle Scholar
  24. 24.
    Warner BB, Stuart LA, Papes RA, Wispé JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998;275(1 Pt 1):L110–7.PubMedGoogle Scholar
  25. 25.
    Yee M, Chess PR, McGrath-Morrow SA, Wang Z, Gelein R, Zhou R, Dean DA, Notter RH, O’Reilly MA. Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L641–9. doi: 10.1152/ajplung.00023.2009. Epub 2009 Jul 17. PMID: 19617311.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Delemos RA, Coalson JJ, Gerstmann DR, Kuehl TJ, Null Jr DM. Oxygen toxicity in the premature baboon with hyaline membrane disease. Am Rev Respir Dis. 1987;136(3):677–82. PMID: 3307571.PubMedCrossRefGoogle Scholar
  27. 27.
    Bancalari E. Changes in the pathogenesis and prevention of chronic lung disease of prematurity. Am J Perinatol. 2001;18(1):1–9. PMID: 11321240.PubMedCrossRefGoogle Scholar
  28. 28.
    Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C, Silva-Neto G. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr. 1995;126(4):605–10. PMID: 7699543.PubMedCrossRefGoogle Scholar
  29. 29.
    Charafeddine L, D'Angio CT, Phelps DL. Atypical chronic lung disease patterns in neonates. Pediatrics. 1999;103(4 Pt 1):759–65. PMID: 10103299.PubMedCrossRefGoogle Scholar
  30. 30.
    Chess PR, D’Angio CT, Pryhuber GS, Maniscalco WM. Pathogenesis of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):171–8. PMID:16860156.PubMedCrossRefGoogle Scholar
  31. 31.
    Northway Jr WH, Rosan RC. Radiographic features of pulmonary oxygen toxicity in the newborn: bronchopulmonary dysplasia. Radiology. 1968;91(1):49–58. PMID: 4871379.PubMedCrossRefGoogle Scholar
  32. 32.
    Horowitz S. Pathways to cell death in hyperoxia. Chest. 1999;116(1 Suppl):64S–7. PMID: 10424596.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Reilly MA. DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am J Physiol Lung Cell Mol Physiol. 2001;281(2):L291–305. PMID: 11435201.PubMedGoogle Scholar
  34. 34.
    Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164(9):1601–5. PMID: 11719296.PubMedCrossRefGoogle Scholar
  35. 35.
    Davis RP, Mychaliska GB. Neonatal pulmonary physiology. Semin Pediatr Surg. 2013;22(4):179–84. doi: 10.1053/j.sempedsurg.2013.10.005. Epub 2013 Oct 16.PubMedCrossRefGoogle Scholar
  36. 36.
    Joshi S, Kotecha S. Lung growth and development. Early Hum Dev. 2007;83(12):789–94. Epub 2007 Oct 1.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith LJ, McKay KO, van Asperen PP, Selvadurai H, Fitzgerald DA. Normal development of the lung and premature birth. Paediatr Respir Rev. 2010;11(3):135–42. doi: 10.1016/j.prrv.2009.12.006. Epub 2010 Jan 25. Review. PMID: 20692626.PubMedCrossRefGoogle Scholar
  38. 38.
    Groenman F, Rutter M, Caniggia I, Tibboel D, Post M. Hypoxia-inducible factors in the first trimester human lung. J Histochem Cytochem. 2007;55(4):355–63. Epub 2006 Dec 22. PMID: 17189520.PubMedCrossRefGoogle Scholar
  39. 39.
    Thébaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112(16):2477–86. PMID: 1623050.PubMedCrossRefGoogle Scholar
  40. 40.
    Vadivel A, Alphonse RS, Ionescu L, Machado DS, O’Reilly M, Eaton F, Haromy A, Michelakis ED, Thébaud B. Exogenous hydrogen sulfide (H2S) protects alveolar growth in experimental O2-induced neonatal lung injury. PLoS One. 2014;9(3):e90965. doi: 10.1371/journal.pone.0090965. eCollection 2014. PMID: 24603989.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Huang Y, Kapere Ochieng J, Kempen MB, Munck AB, Swagemakers S, van Ijcken W, Grosveld F, Tibboel D, Rottier RJ. Hypoxia inducible factor 3α plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development. PLoS One. 2013;8(2):e57695. doi: 10.1371/journal.pone.0057695. Epub 2013 Feb 25. Erratum in: PLoS One. 2015;10(3):e0119359. PMID: 23451260.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wilborn AM, Evers LB, Canada AT. Oxygen toxicity to the developing lung of the mouse: role of reactive oxygen species. Pediatr Res. 1996;40(2):225–32. PMID: 8827770.PubMedCrossRefGoogle Scholar
  43. 43.
    Weinberger B, Laskin DL, Heck DE, Laskin JD. Oxygen toxicity in premature infants. Toxicol Appl Pharmacol. 2002;181(1):60–7. PMID: 12030843.PubMedCrossRefGoogle Scholar
  44. 44.
    Saugstad OD. Oxygen and oxidative stress in bronchopulmonary dysplasia. J Perinat Med. 2010;38(6):571–7. doi: 10.1515/JPM.2010.108. Epub 2010 Aug 31. PMID: 20807008.PubMedGoogle Scholar
  45. 45.
    Vento M, Escobar J, Cernada M, Escrig R, Aguar M. The use and misuse of oxygen during the neonatal period. Clin Perinatol. 2012;39(1):165–76. doi: 10.1016/j.clp.2011.12.014. Epub 2012 Jan 9. PMID: 22341544.PubMedCrossRefGoogle Scholar
  46. 46.
    Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal. 2009;11(4):841–60. doi: 10.1089/ARS.2008.2231. PMID: 18828698.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266(1):37–52. doi: 10.1016/j.canlet.2008.02.044. Epub 2008 Apr 10. PMID: 18406051.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, Zhang X, Matthay MA, Ware LB, Homer RJ, Lee PJ, Geick A, de Fougerolles AR, Elias JA. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med. 2006;12(11):1286–93. Epub 2006 Nov 5. PMID: 17086189.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bhandari V, Elias JA. The role of angiopoietin 2 in hyperoxia-induced acute lung injury. Cell Cycle. 2007;6(9):1049–52. Epub 2007 May 2. PMID: 17438375.PubMedCrossRefGoogle Scholar
  50. 50.
    Aghai ZH, Faqiri S, Saslow JG, Nakhla T, Farhath S, Kumar A, Eydelman R, Strande L, Stahl G, Leone P, Bhandari V. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol. 2008;28(2):149–55. Epub 2007 Nov 22. PMID: 18033304.PubMedCrossRefGoogle Scholar
  51. 51.
    Barazzone C, White CW. Mechanisms of cell injury and death in hyperoxia: role of cytokines and Bcl-2 family proteins. Am J Respir Cell Mol Biol. 2000;22(5):517–9. PMID: 10783120.PubMedCrossRefGoogle Scholar
  52. 52.
    Pagano A, Barazzone-Argiroffo C. Alveolar cell death in hyperoxia-induced lung injury. Ann N Y Acad Sci. 2003;1010:405–16. PMID: 15033761.PubMedCrossRefGoogle Scholar
  53. 53.
    Mantell LL, Horowitz S, Davis JM, Kazzaz JA. Hyperoxia-induced cell death in the lung—the correlation of apoptosis, necrosis, and inflammation. Ann N Y Acad Sci. 1999;887:171–80. PMID: 10668473.PubMedCrossRefGoogle Scholar
  54. 54.
    O’Reilly MA, Staversky RJ, Huyck HL, Watkins RH, LoMonaco MB, D’Angio CT, Baggs RB, Maniscalco WM, Pryhuber GS. Bcl-2 family gene expression during severe hyperoxia induced lung injury. Lab Invest. 2000;80(12):1845–54. PMID:11140697.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang X, Ryter SW, Dai C, Tang ZL, Watkins SC, Yin XM, Song R, Choi AM. Necrotic cell death in response to oxidant stress involves the activation of the apoptogenic caspase-8/bid pathway. J Biol Chem. 2003;278(31):29184–91. Epub 2003 May 15. PMID: 12754217.PubMedCrossRefGoogle Scholar
  56. 56.
    Collard KJ, Godeck S, Holley JE, Quinn MW. Pulmonary antioxidant concentrations and oxidative damage in ventilated premature babies. Arch Dis Child Fetal Neonatal Ed. 2004;89(5):F412–6. PMID: 15321959.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gladstone Jr IM, Levine RL. Oxidation of proteins in neonatal lungs. Pediatrics. 1994;93(5):764–8. PMID: 8165075.PubMedGoogle Scholar
  58. 58.
    Smith CV, Hansen TN, Martin NE, McMicken HW, Elliott SJ. Oxidant stress responses in premature infants during exposure to hyperoxia. Pediatr Res. 1993;34(3):360–5. PMID: 8134179.PubMedCrossRefGoogle Scholar
  59. 59.
    Sosenko IR, Frank L. Nutritional influences on lung development and protection against chronic lung disease. Semin Perinatol. 1991;15(6):462–8. PMID: 1803523.PubMedGoogle Scholar
  60. 60.
    Frank L, Lewis PL, Garcia-Pons T. Intrauterine growth-retarded rat pups show increased susceptibility to pulmonary O2 toxicity. Pediatr Res. 1985;19(3):281–6. PMID: 3982889.PubMedCrossRefGoogle Scholar
  61. 61.
    Frank L, Roberts RJ. Effects of low-dose prenatal corticosteroid administration on the premature rat. Biol Neonate. 1979;36(1–2):1–9. PMID: 476207.PubMedCrossRefGoogle Scholar
  62. 62.
    Walther FJ, Jobe AH, Ikegami M. Repetitive prenatal glucocorticoid therapy reduces oxidative stress in the lungs of preterm lambs. J Appl Physiol (1985). 1998;85(1):273–8. PMID: 9655786.Google Scholar
  63. 63.
    Vento M, Aguar M, Escobar J, Arduini A, Escrig R, Brugada M, Izquierdo I, Asensi MA, Sastre J, Saenz P, Gimeno A. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal. 2009;11(12):2945–55. doi: 10.1089/ars.2009.2671. PMID: 19645572.PubMedCrossRefGoogle Scholar
  64. 64.
    Wemhöner A, Ortner D, Tschirch E, Strasak A, Rüdiger M. Nutrition of preterm infants in relation to bronchopulmonary dysplasia. BMC Pulm Med. 2011;11:7. doi: 10.1186/1471-2466-11-7. PMID: 21291563.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    O’Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol. 1999;12(1):83–92. PMID: 9894022.PubMedCrossRefGoogle Scholar
  66. 66.
    Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002;39(6):1088–94. PMID: 12052847.PubMedCrossRefGoogle Scholar
  67. 67.
    Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest. 1974;30(1):35–42. PMID: 4812806.PubMedGoogle Scholar
  68. 68.
    Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8(1–2):76–87. PMID: 16487040.PubMedCrossRefGoogle Scholar
  69. 69.
    Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR. Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med. 2005;38(3):325–43. PMID: 15629862.PubMedCrossRefGoogle Scholar
  70. 70.
    Cho HY, Jedlicka AE, Reddy SP, Kensler TW, Yamamoto M, Zhang LY, Kleeberger SR. Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol. 2002;26(2):175–82. PMID: 11804867.PubMedCrossRefGoogle Scholar
  71. 71.
    Reddy NM, Kleeberger SR, Cho HY, Yamamoto M, Kensler TW, Biswal S, Reddy SP. Deficiency in Nrf2-GSH signaling impairs type II cell growth and enhances sensitivity to oxidants. Am J Respir Cell Mol Biol. 2007;37(1):3–8. Epub 2007 Apr 5. PMID: 17413030.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cho HY, Gladwell W, Wang X, Chorley B, Bell D, Reddy SP, Kleeberger SR. Nrf2-regulated PPAR{gamma} expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med. 2010;182(2):170–82. doi: 10.1164/rccm.200907-1047OC. Epub 2010 Mar 11. PMID: 20224069.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhang J, Ohta T, Maruyama A, Hosoya T, Nishikawa K, Maher JM, Shibahara S, Itoh K, Yamamoto M. BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress. Mol Cell Biol. 2006;26(21):7942–52. Epub 2006 Aug 21. PMID: 16923960.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cho HY, van Houten B, Wang X, Miller-DeGraff L, Fostel J, Gladwell W, Perrow L, Panduri V, Kobzik L, Yamamoto M, Bell DA, Kleeberger SR. Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice. Antioxid Redox Signal. 2012;17(8):1066–82. doi: 10.1089/ars.2011.4288. Epub 2012 Apr 18. PMID: 22400915.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    McGrath-Morrow S, Lauer T, Yee M, Neptune E, Podowski M, Thimmulappa RK, O’Reilly M, Biswal S. Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2009;296(4):L565–73. doi: 10.1152/ajplung.90487.2008. Epub 2009 Jan 16. PMID: 19151108.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, Aplenc R, Yamamoto T, Yamamoto M, Cho HY, Kleeberger SR. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 2007;21(9):2237–46. Epub 2007 Mar 23. PMID: 17384144.PubMedCrossRefGoogle Scholar
  77. 77.
    Auten RL, O'Reilly MA, Oury TD, Nozik-Grayck E, Whorton MH. Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L32–40. Epub 2005 Aug 12. PMID: 16100289.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wispé JR, Warner BB, Clark JC, Dey CR, Neuman J, Glasser SW, Crapo JD, Chang LY, Whitsett JA. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 1992;267(33):23937–41. PMID: 1385428.PubMedGoogle Scholar
  79. 79.
    Ratner V, Starkov A, Matsiukevich D, Polin RA, Ten VS. Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol. 2009;40(5):511–8. doi: 10.1165/rcmb.2008-0341RC. Epub 2009 Jan 23. PMID: 19168698.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3. Epub 2006 May 25. PMID: 16728594.PubMedCrossRefGoogle Scholar
  81. 81.
    Hershenson MB, Aghili S, Punjabi N, Hernandez C, Ray DW, Garland A, Glagov S, Solway J. Hyperoxia-induced airway hyperresponsiveness and remodeling in immature rats. Am J Physiol. 1992;262(3 Pt 1):L263–9. Erratum in: Am J Physiol 1993;265(2 Pt 1):section L followi. PMID: 1550249.PubMedGoogle Scholar
  82. 82.
    Denis D, Fayon MJ, Berger P, Molimard M, De Lara MT, Roux E, Marthan R. Prolonged moderate hyperoxia induces hyperresponsiveness and airway inflammation in newborn rats. Pediatr Res. 2001;50(4):515–9. PMID: 11568296.PubMedCrossRefGoogle Scholar
  83. 83.
    O’Reilly M, Hansbro PM, Horvat JC, Beckett EL, Harding R, Sozo F. Bronchiolar remodeling in adult mice following neonatal exposure to hyperoxia: relation to growth. Anat Rec (Hoboken). 2014;297(4):758–69. doi: 10.1002/ar.22867. Epub 2014 Jan 17. PMID: 24443274.CrossRefGoogle Scholar
  84. 84.
    Wang H, Jafri A, Martin RJ, Nnanabu J, Farver C, Prakash YS, MacFarlane PM. Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. Am J Physiol Lung Cell Mol Physiol. 2014;307(4):L295–301. doi: 10.1152/ajplung.00208.2013. Epub 2014 Jun 20. PMID: 24951774.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ali NK, Jafri A, Sopi RB, Prakash YS, Martin RJ, Zaidi SI. Role of arginase in impairing relaxation of lung parenchyma of hyperoxia-exposed neonatal rats. Neonatology. 2012;101(2):106–15. doi: 10.1159/000329540. Epub 2011 Sep 23. PMID: 21952491.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M, Sheikh A. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11(1):e1001596. doi: 10.1371/journal.pmed.1001596. eCollection 2014 Jan. Review. PMID: 2449240.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Vrijlandt EJ, Kerstjens JM, Duiverman EJ, Bos AF, Reijneveld SA. Moderately preterm children have more respiratory problems during their first 5 years of life than children born full term. Am J Respir Crit Care Med. 2013;187(11):1234–40. doi: 10.1164/rccm.201211-2070OC. PMID: 2352593.PubMedCrossRefGoogle Scholar
  88. 88.
    Aggarwal NR, D’Alessio FR, Tsushima K, Files DC, Damarla M, Sidhaye VK, Fraig MM, Polotsky VY, King LS. Moderate oxygen augments lipopolysaccharide-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2010;298(3):L371–81. doi: 10.1152/ajplung.00308.2009. Epub 2009 Dec 24. PMID: 20034961.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bhandari V. Molecular mechanisms of hyperoxia-induced acute lung injury. Front Biosci. 2008;13:6653–61. PMID: 18508685, Review.PubMedCrossRefGoogle Scholar
  90. 90.
    Konsavage WM, Zhang L, Wu Y, Shenberger JS. Hyperoxia-induced activation of the integrated stress response in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol. 2012;302(1):L27–35. doi: 10.1152/ajplung.00174.2011. Epub 2011 Oct 7. PMID: 21984568.PubMedCrossRefGoogle Scholar
  91. 91.
    Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel D, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 2009;123(4):1132–41. doi: 10.1542/peds.2008-0526. PMID: 19336372.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bhattacharya S, Go D, Krenitsky DL, Huyck HL, Solleti SK, Lunger VA, Metlay L, Srisuma S, Wert SE, Mariani TJ, Pryhuber GS. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2012;186(4):349–58. doi: 10.1164/rccm.201203-0406OC. Epub 2012 Jun 21. PMID: 22723293.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Broström EB, Katz-Salamon M, Lundahl J, Halldén G, Winbladh B. Eosinophil activation in preterm infants with lung disease. Acta Paediatr. 2007;96(1):23–8. PMID: 17187598.PubMedCrossRefGoogle Scholar
  94. 94.
    Joza N, Kroemer G, Penninger JM. Genetic analysis of the mammalian cell death machinery. Trends Genet. 2002;18(3):142–9. PMID: 11858838.PubMedCrossRefGoogle Scholar
  95. 95.
    D’Angio CT, LoMonaco MB, Chaudhry SA, Paxhia A, Ryan RM. Discordant pulmonary proinflammatory cytokine expression during acute hyperoxia in the newborn rabbit. Exp Lung Res. 1999;25(5):443–65. PMID: 10483526.PubMedCrossRefGoogle Scholar
  96. 96.
    Bry K, Whitsett JA, Lappalainen U. IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol. 2007;36(1):32–42. Epub 2006 Aug 3. PMID: 16888287.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med. 2006;41(1):4–18. Epub 2006 Feb 17. PMID: 16781448.PubMedCrossRefGoogle Scholar
  98. 98.
    Choo-Wing R, Nedrelow JH, Homer RJ, Elias JA, Bhandari V. Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L142–50. Epub 2007 Mar 30. PMID: 17400600.PubMedCrossRefGoogle Scholar
  99. 99.
    Lindsay L, Oliver SJ, Freeman SL, Josien R, Krauss A, Kaplan G. Modulation of hyperoxia-induced TNF-alpha expression in the newborn rat lung by thalidomide and dexamethasone. Inflammation. 2000;24(4):347–56. PMID: 10850856.PubMedCrossRefGoogle Scholar
  100. 100.
    Wagenaar GT, ter Horst SA, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, de Heer E, Hiemstra PS, Poorthuis BJ, Walther FJ. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med. 2004;36(6):782–801. PMID: 14990357.PubMedCrossRefGoogle Scholar
  101. 101.
    Deng H, Mason SN, Auten Jr RL. Lung inflammation in hyperoxia can be prevented by antichemokine treatment in newborn rats. Am J Respir Crit Care Med. 2000;162(6):2316–23. PMID: 11112157.PubMedCrossRefGoogle Scholar
  102. 102.
    Thompson A, Bhandari V. Pulmonary biomarkers of bronchopulmonary dysplasia. Biomark Insights. 2008;3:361–73. PMID: 19430584.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J, Delacourt C. High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2002;165(10):1384–7. PMID: 12016100.PubMedCrossRefGoogle Scholar
  104. 104.
    Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE. CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol. 2004;37(2):137–48. PMID: 14730659.PubMedCrossRefGoogle Scholar
  105. 105.
    Vozzelli MA, Mason SN, Whorton MH, Auten Jr RL. Antimacrophage chemokine treatment prevents neutrophil and macrophage influx in hyperoxia-exposed newborn rat lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(3):L488–93. Epub 2003 Feb 14. PMID: 12588706.PubMedCrossRefGoogle Scholar
  106. 106.
    Hosford GE, Fang X, Olson DM. Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization. Pediatr Res. 2004;56(1):26–34. Epub 2004 May 5. PMID: 15128910.PubMedCrossRefGoogle Scholar
  107. 107.
    Radomski A, Sawicki G, Olson DM, Radomski MW. The role of nitric oxide and metalloproteinases in the pathogenesis of hyperoxia-induced lung injury in newborn rats. Br J Pharmacol. 1998;125(7):1455–62. PMID: 9884073.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Tambunting F, Beharry KD, Hartleroad J, Waltzman J, Stavitsky Y, Modanlou HD. Increased lung matrix metalloproteinase-9 levels in extremely premature baboons with bronchopulmonary dysplasia. Pediatr Pulmonol. 2005;39(1):5–14. PMID: 15521085.PubMedCrossRefGoogle Scholar
  109. 109.
    Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L584–92. doi: 10.1152/ajplung.00441.2007. Epub 2008 Jul 25. PMID: 18658276.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lukkarinen H, Hogmalm A, Lappalainen U, Bry K. Matrix metalloproteinase-9 deficiency worsens lung injury in a model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2009;41(1):59–68. doi: 10.1165/rcmb.2008-0179OC. Epub 2008 Dec 18. PMID: 19097983.PubMedCrossRefGoogle Scholar
  111. 111.
    Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P, Andersson S. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics. 2001;108(3):686–92. PMID: 11533337.PubMedCrossRefGoogle Scholar
  112. 112.
    Sweet DG, Curley AE, Chesshyre E, Pizzotti J, Wilbourn MS, Halliday HL, Warner JA. The role of matrix metalloproteinases -9 and -2 in development of neonatal chronic lung disease. Acta Paediatr. 2004;93(6):791–6. PMID: 15244229.PubMedCrossRefGoogle Scholar
  113. 113.
    Harijith A, Choo-Wing R, Cataltepe S, Yasumatsu R, Aghai ZH, Janér J, Andersson S, Homer RJ, Bhandari V. A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2011;44(5):621–30. doi: 10.1165/rcmb.2010-0058OC. Epub 2011 Jan 7. PMID: 21216975.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sharif O, Krishnan PV, Thekdi AD, Gordon SC. Acute hepatitis B in an urban tertiary care hospital in the United States: a cohort evaluation. J Clin Gastroenterol. 2013;47(9):e87–90. doi: 10.1097/MCG.0b013e31828a383c. PMID: 23470641.PubMedCrossRefGoogle Scholar
  115. 115.
    Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V. Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol. 2013;48(6):749–57. doi: 10.1165/rcmb.2012-0381OC. PMID: 23470621.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Darling NJ, Cook SJ. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta. 2014;1843(10):2150–63. doi: 10.1016/j.bbamcr.2014.01.009. Epub 2014 Jan 15. Review. PMID: 2444027.PubMedCrossRefGoogle Scholar
  117. 117.
    Alejandre-Alcázar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Pérez J, Wygrecka M, Eul B, Köbrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L537–49. Epub 2006 Oct 27. PMID: 17071723.PubMedCrossRefGoogle Scholar
  118. 118.
    Li Z, Choo-Wing R, Sun H, Sureshbabu A, Sakurai R, Rehan VK, Bhandari V. A potential role of the JNK pathway in hyperoxia-induced cell death, myofibroblast transdifferentiation and TGF-β1-mediated injury in the developing murine lung. BMC Cell Biol. 2011;12:54. doi: 10.1186/1471-2121-12-54. PMID: 22172122.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res. 2015;16:4. doi: 10.1186/s12931-014-0162-6. PMID: 25591994.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kevill KA, Bhandari V, Kettunen M, Leng L, Fan J, Mizue Y, Dzuira JD, Reyes-Mugica M, McDonald CL, Baugh JA, O’Connor CL, Aghai ZH, Donnelly SC, Bazzy-Asaad A, Bucala RJ. A role for macrophage migration inhibitory factor in the neonatal respiratory distress syndrome. J Immunol. 2008;180(1):601–8. PMID: 18097062.PubMedCrossRefGoogle Scholar
  121. 121.
    Sun H, Choo-Wing R, Fan J, Leng L, Syed MA, Hare AA, Jorgensen WL, Bucala R, Bhandari V. Small molecular modulation of macrophage migration inhibitory factor in the hyperoxia-induced mouse model of bronchopulmonary dysplasia. Respir Res. 2013;14:27. doi: 10.1186/1465-9921-14-27. PMID: 23448134.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sun H, Choo-Wing R, Sureshbabu A, Fan J, Leng L, Yu S, Jiang D, Noble P, Homer RJ, Bucala R, Bhandari V. A critical regulatory role for macrophage migration inhibitory factor in hyperoxia-induced injury in the developing murine lung. PLoS One. 2013;8(4):e60560. doi: 10.1371/journal.pone.0060560. Print 2013. PMID: 23637753.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Meller S, Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships. Exp Lung Res. 2012;38(4):192–203. doi: 10.3109/01902148.2012.663454. Epub 2012 Mar 6. PMID: 22394267.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    D’Angio CT, Maniscalco WM. The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci. 2002;7:d1609–23. Epub 2002 Jul 1. PMID: 12086914.PubMedCrossRefGoogle Scholar
  125. 125.
    Budinger GR, Mutlu GM, Urich D, Soberanes S, Buccellato LJ, Hawkins K, Chiarella SE, Radigan KA, Eisenbart J, Agrawal H, Berkelhamer S, Hekimi S, Zhang J, Perlman H, Schumacker PT, Jain M, Chandel NS. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am J Respir Crit Care Med. 2011;183(8):1043–54. doi: 10.1164/rccm.201002-0181OC. Epub 2010 Oct 19. PMID: 20959557.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34(4):453–63. Epub 2005 Dec 15. PMID: 16357365.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang X, Shan P, Sasidhar M, Chupp GL, Flavell RA, Choi AM, Lee PJ. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol. 2003;28(3):305–15. PMID: 12594056.PubMedCrossRefGoogle Scholar
  128. 128.
    Truong SV, Monick MM, Yarovinsky TO, Powers LS, Nyunoya T, Hunninghake GW. Extracellular signal-regulated kinase activation delays hyperoxia-induced epithelial cell death in conditions of Akt downregulation. Am J Respir Cell Mol Biol. 2004;31(6):611–8. Epub 2004 Aug 12. PMID: 15308507.PubMedCrossRefGoogle Scholar
  129. 129.
    Singleton PA, Pendyala S, Gorshkova IA, Mambetsariev N, Moitra J, Garcia JG, Natarajan V. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium. J Biol Chem. 2009;284(50):34964–75. doi: 10.1074/jbc.M109.013771. Epub 2009 Oct 15. PMID: 19833721.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol. 2014;50(2):233–45. doi: 10.1165/rcmb.2013-0014TR. PMID: 24024524, Review.PubMedGoogle Scholar
  131. 131.
    Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L893–905. doi: 10.1152/ajplung.00267.2013. Epub 2013 Nov 8. Review. PMID: 24213917.PubMedCrossRefGoogle Scholar
  132. 132.
    Cho KA, Suh JW, Lee KH, Kang JL, Woo SY. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. 2012;24(3):147–58. doi: 10.1093/intimm/dxr110. Epub 2011 Dec 29. PMID: 22207130.PubMedCrossRefGoogle Scholar
  133. 133.
    Lee PJ, Choi AM. Pathways of cell signaling in hyperoxia. Free Radic Biol Med. 2003;35(4):341–50. PMID: 12899937, Review.PubMedCrossRefGoogle Scholar
  134. 134.
    Sunday ME, Yoder BA, Cuttitta F, Haley KJ, Emanuel RL. Bombesin-like peptide mediates lung injury in a baboon model of bronchopulmonary dysplasia. J Clin Invest. 1998;102(3):584–94. PMID: 9691095.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Subramaniam M, Bausch C, Twomey A, Andreeva S, Yoder BA, Chang L, Crapo JD, Pierce RA, Cuttitta F, Sunday ME. Bombesin-like peptides modulate alveolarization and angiogenesis in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2007;176(9):902–12. Epub 2007 Jun 21. PMID: 17585105.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Cullen A, Van Marter LJ, Allred EN, Moore M, Parad RB, Sunday ME. Urine bombesin-like peptide elevation precedes clinical evidence of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2002;165(8):1093–7. PMID: 11956050.PubMedCrossRefGoogle Scholar
  137. 137.
    Padela S, Cabacungan J, Shek S, Belcastro R, Yi M, Jankov RP, Tanswell AK. Hepatocyte growth factor is required for alveologenesis in the neonatal rat. Am J Respir Crit Care Med. 2005;172(7):907–14. Epub 2005 Jun 30. PMID: 15994466.PubMedCrossRefGoogle Scholar
  138. 138.
    Lassus P, Heikkilä P, Andersson LC, von Boguslawski K, Andersson S. Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr. 2003;143(2):199–202. PMID: 12970632.PubMedCrossRefGoogle Scholar
  139. 139.
    Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352. doi: 10.3389/fphys.2014.00352. eCollection 2014. PMID: 25324778.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9. PMID: 14675124.PubMedCrossRefGoogle Scholar
  141. 141.
    Gitto E, Reiter RJ, Amodio A, Romeo C, Cuzzocrea E, Sabatino G, Buonocore G, Cordaro V, Trimarchi G, Barberi I. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res. 2004;36(4):250–5. PMID: 15066049.PubMedCrossRefGoogle Scholar
  142. 142.
    Kinsella JP, Greenough A, Abman SH. Bronchopulmonary dysplasia. Lancet. 2006;367(9520):1421–31. PMID: 16650652.PubMedCrossRefGoogle Scholar
  143. 143.
    Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA. 1995;92(14):6264–8. PMID: 7603981.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Turrens JF, Crapo JD, Freeman BA. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J Clin Invest. 1984;73(1):87–95. PMID: 6690485.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Padmanabhan RV, Gudapaty R, Liener IE, Schwartz BA, Hoidal JR. Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis. 1985;132(1):164–7. PMID: 4014861.PubMedGoogle Scholar
  146. 146.
    Davis JM, Rosenfeld WN, Sanders RJ, Gonenne A. Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J Appl Physiol (1985). 1993;74(5):2234–41. PMID: 8335553.Google Scholar
  147. 147.
    Barnard ML, Baker RR, Matalon S. Mitigation of oxidant injury to lung microvasculature by intratracheal instillation of antioxidant enzymes. Am J Physiol. 1993;265(4 Pt 1):L340–5. PMID: 8238368.PubMedGoogle Scholar
  148. 148.
    Rosenfeld WN, Davis JM, Parton L, Richter SE, Price A, Flaster E, Kassem N. Safety and pharmacokinetics of recombinant human superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome. Pediatrics. 1996;97(6 Pt 1):811–7. PMID: 8657519.PubMedGoogle Scholar
  149. 149.
    Davis JM, Rosenfeld WN, Richter SE, Parad MR, Gewolb IH, Spitzer AR, Carlo WA, Couser RJ, Price A, Flaster E, Kassem N, Edwards L, Tierney J, Horowitz S. Safety and pharmacokinetics of multiple doses of recombinant human CuZn superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome. Pediatrics. 1997;100(1):24–30. PMID: 9200356.PubMedCrossRefGoogle Scholar
  150. 150.
    Davis JM, Parad RB, Michele T, Allred E, Price A, Rosenfeld W, North American Recombinant Human CuZnSOD Study Group. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics. 2003;111(3):469–76. PMID: 12612223.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PediatricsChildren’s Hospital at University of Illinois ChicagoChicagoUSA
  2. 2.Department of Neonatology (Pediatrics)Drexel University College of Medicine, St. Christopher’s Hospital for ChildrenPhiladelphiaUSA
  3. 3.Hahnemann University HospitalPhiladelphiaUSA
  4. 4.Temple University HospitalPhiladelphiaUSA

Personalised recommendations