Skip to main content

Exact and Approximation Algorithms for Data Mule Scheduling in a Sensor Network

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9536))

Abstract

We consider the fundamental problem of scheduling data mules for managing a wireless sensor network. A data mule tours around a sensor network and can help with network maintenance such as data collection and battery recharging/replacement. We assume that each sensor has a fixed data generation rate and a capacity (upper bound on storage size). If the data mule arrives after the storage capacity is met, additional data generated is lost. In this paper we formulate several fundamental problems for the best schedule of single or multiple data mules and provide algorithms with provable performance. First, we consider using a single data mule to collect data from sensors, and we aim to maximize the data collection rate. We then generalize this model to consider k data mules. Additionally, we study the problem of minimizing the number of data mules such that it is possible for them to collect all data, without loss. For the above problems, when we assume that the capacities of all sensors are the same, we provide exact algorithms for special cases and constant-factor approximation algorithms for more general cases. We also show that several of these problems are NP-hard. When we allow sensor capacities to differ, we have a constant-factor approximation for each of the aforementioned problems when the ratio of the maximum capacity to the minimum capacity is constant.

G. Citovsky and J. Mitchell are partially supported by a grant from the US-Israel Binational Science Foundation (project 2010074) and the National Science Foundation (CCF-1018388, CCF-1540890). J. Gao and J. Zeng are partially supported by grants from AFOSR (FA9550-14-1-0193) and NSF (DMS-1418255, DMS-1221339, CNS-1217823).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National traveling salesman problems. http://www.math.uwaterloo.ca/tsp/world/countries.html. Accessed 15 Dec 2014

  2. Almi’ani, K., Viglas, A., Libman, L.: Tour and path planning methods for efficient data gathering using mobile elements. Int. J. Ad Hoc Ubiquitous Comput. (2014)

    Google Scholar 

  3. Anastasi, G., Conti, M., Di Francesco, M.: Data collection in sensor networks with data mules: an integrated simulation analysis. In: IEEE Symposium on Computers and Communications, ISCC 2008, pp. 1096–1102, July 2008

    Google Scholar 

  4. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-collecting steiner tree and tsp. SIAM J. Comput. 40(2), 309–332 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Archetti, C., Speranza, M., Vigo, D.: Vehicle routing problems with profits. Technical report WPDEM2013/3, University of Brescia (2013)

    Google Scholar 

  6. Arkin, E., Mitchell, J.S.B., Narasimhan, G.: Resource-constrained geometric network optimization. In: Symposium on Computational Geometry, pp. 307–316 (1998)

    Google Scholar 

  7. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ausiello, G., Bonifaci, V., Laura, L.: The online prize-collecting traveling salesman problem. Inf. Process. Lett. 107(6), 199–204 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ausiello, G., Leonardi, S., Marchetti-Spaccamela, A.: On salesmen, repairmen, spiders, and other traveling agents. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 1–16. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM J. Comput. 277–283 (1995)

    Google Scholar 

  11. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-tsp and vehicle routing with time-windows. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 166–174. ACM, New York (2004)

    Google Scholar 

  13. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59(1), 413–420 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Blum, A., Chawla, S., Karger, D., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward tsp. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 46–55, Oct 2003

    Google Scholar 

  15. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. ACM Trans. Algorithms 8(3), 23:1–23:27 (2012)

    Article  Google Scholar 

  16. Chen, K., Har-Peled, S.: The euclidean orienteering problem revisited. SIAM J. Comput. 38(1), 385–397 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Coene, S., Spieksma, F.C.R.: Profit-based latency problems on the line. Oper. Res. Lett. 36(3), 333–337 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eksioglu, B., Vural, A.V., Reisman, A.: Survey: the vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)

    Article  Google Scholar 

  19. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Covering graphs using trees and stars. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM/APPROX 2003. LNCS, vol. 2764, pp. 24–35. Springer, Heidelberg (2003)

    Google Scholar 

  20. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205 (2005)

    Article  Google Scholar 

  21. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics 34, 307–318 (1987)

    Article  MATH  Google Scholar 

  22. Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

    Article  Google Scholar 

  23. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of maximum \(k\)-coverage. Naval Res. Logistics 45(6), 615–627 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jea, D., Somasundara, A., Srivastava, M.: Multiple controlled mobile elements (data mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Kansal, A., Rahimi, M., Kaiser, W.J., Srivastava, M.B., Pottie, G.J., Estrin, D.: Controlled mobility for sustainable wireless networks. In: IEEE Sensor and Ad Hoc Communications and Networks (SECON 2004) (2004)

    Google Scholar 

  27. Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-max tree cover and bounded tree cover problems. Algorithmica 69(2), 443–460 (2014)

    Article  MathSciNet  Google Scholar 

  28. Kim, D., Uma, R., Abay, B., Wu, W., Wang, W., Tokuta, A.: Minimum latency multiple data mule trajectory planning in wireless sensor networks. IEEE Trans. Mob. Comput. 13(4), 838–851 (2014)

    Article  Google Scholar 

  29. Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)

    Article  MATH  Google Scholar 

  30. Ma, M., Yang, Y.: Data gathering in wireless sensor networks with mobile collectors. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–9. IEEE (2008)

    Google Scholar 

  31. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle routing problems. Networks 59(2), 209–214 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 255(1), 1–11 (2013)

    Article  Google Scholar 

  33. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: IEEE SNPA Workshop, pp. 30–41 (2003)

    Google Scholar 

  34. Somasundara, A., Kansal, A., Jea, D., Estrin, D., Srivastava, M.: Controllably mobile infrastructure for low energy embedded networks. IEEE Trans. Mob. Comput. 5(8), 958–973 (2006)

    Article  Google Scholar 

  35. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mob. Comput. 6(4), 395–410 (2007)

    Article  Google Scholar 

  36. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

    Article  MATH  Google Scholar 

  37. Vincze, Z., Vida, R.: Multi-hop wireless sensor networks with mobile sink. In: CoNEXT 2005: Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, pp. 302–303. ACM Press, New York (2005)

    Google Scholar 

  38. Wu, F.J., Tseng, Y.C.: Energy-conserving data gathering by mobile mules in a spatially separated wireless sensor network. Wirel. Commun. Mob. Comput. 13(15), 1369–1385 (2013)

    Google Scholar 

  39. Yu, W., Liu, Z.: Vehicle routing problems with regular objective functions on a path. Naval Res. Logistics (NRL) 61(1), 34–43 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Citovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Citovsky, G., Gao, J., Mitchell, J.S.B., Zeng, J. (2015). Exact and Approximation Algorithms for Data Mule Scheduling in a Sensor Network. In: Bose, P., Gąsieniec, L., Römer, K., Wattenhofer, R. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2015. Lecture Notes in Computer Science(), vol 9536. Springer, Cham. https://doi.org/10.1007/978-3-319-28472-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28472-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28471-2

  • Online ISBN: 978-3-319-28472-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics