Skip to main content

Beachcombing on Strips and Islands

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9536))

Abstract

A group of mobile robots (beachcombers) have to search collectively every point of a given domain. At any given moment, each robot can be in walking mode or in searching mode. It is assumed that each robot’s maximum allowed searching speed is strictly smaller than its maximum allowed walking speed. A point of the domain is searched if at least one of the robots visits it in searching mode. The Beachcombers’ Problem consists in developing efficient schedules (algorithms) for the robots which collectively search all the points of the given domain as fast as possible.

We first consider the online Beachcombers’ Problem, where the robots are initially collocated at the origin of a semi-infinite line. It is sought to design a schedule A with maximum speed S, defined as \(S = \inf _{\ell }{\frac{\ell }{t_A(\ell )}}\), where \(t_A(\ell )\) denotes the time when the search of the segment \([0,\ell ]\) is completed under A. We consider a discrete and a continuous version of the problem, depending on whether the infimum is taken over \(\ell \in \mathbb {N}^*\) or \(\ell \ge 1\). We prove that the \(\mathtt {LeapFrog}\) algorithm, which was proposed in [Czyzowicz et al., SIROCCO 2014, LNCS 8576, pp. 23–36 (2014)], is in fact optimal in the discrete case. This settles in the affirmative a conjecture from that paper. We also show how to extend this result to the more general continuous online setting.

For the offline version of the Beachcombers’ Problem, we consider the single-source Beachcombers’ Problem on the cycle, as well as the multi-source Beachcombers’ Problem on the cycle and on the finite segment. For the single-source Beachcombers’ Problem on the cycle, we show that the structure of the optimal solutions is identical to the structure of the optimal solutions to the two-source Beachcombers’ Problem on a finite segment. In consequence, by using results from [Czyzowicz et al., ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], we prove that the single-source Beachcombers’ Problem on the cycle is NP-hard, and we derive approximation algorithms for the problem. For the multi-source variant of the Beachcombers’ Problem on the cycle and on the finite segment, we obtain efficient approximation algorithms.

One important contribution of our work is that, in all variants of the offline Beachcombers’ Problem that we discuss, we allow the robots to change direction of movement and search points of the domain on both sides of their respective starting positions. This represents a significant generalization compared to the model considered in [Czyzowicz et al., ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], in which each robot had a fixed direction of movement that was specified as part of the solution to the problem. We manage to prove that changes of direction do not help the robots achieve optimality.

Part of this work was done while Jurek Czyzowicz was visiting the LaBRI as a guest professor of the University of Bordeaux. This work was partially funded by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried out in the frame of “the Investments for the future” Programme IdEx Bordeaux – CPU (ANR-10-IDEX-03-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albers, S.: Online algorithms: a survey. Math. Program. 97(1–2), 3–26 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Albers, S., Schmelzer, S.: Online algorithms - what is it worth to know the future? In: Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H., Wagner, D. (eds.) Algorithms Unplugged, pp. 361–366. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers, Dordrecht (2002). vol. 55

    Google Scholar 

  5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput. 106, 234–234 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile agents. In: ACM SIGACT-SIGOPS 2010, pp. 305–314. ACM (2010)

    Google Scholar 

  7. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)

    Article  MATH  Google Scholar 

  8. Bellman, R.: An optimal search problem. Bull. Am. Math. Soc. 62, 270 (1963)

    Google Scholar 

  9. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Czyzowicz, J., Gąsieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The Beachcombers’ problem: walking and searching with mobile robots. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 23–36. Springer, Heidelberg (2014)

    Google Scholar 

  12. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The multi-source Beachcombers problem. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSENSORS 2014, LNCS 8847. LNCS, vol. 8847, pp. 3–21. Springer, Heidelberg (2015)

    Google Scholar 

  13. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration of terrains with obstacles. Inf. Comput. 225, 16–28 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Foundations of Computer Science, FOCS 1990, pp. 355–361. IEEE (1990)

    Google Scholar 

  18. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment (extended abstract). In: Foundations of Computer Science, FOCS 1991, pp. 298–303. IEEE (1991)

    Google Scholar 

  19. Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 520–532. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive online approximation of the optimal search ratio. SIAM J. Comput. 38(3), 881–898 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28, 480–495 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Wang, G., Irwin, M.J., Fu, H., Berman, P., Zhang, W., Porta, T.L.: Optimizing sensor movement planning for energy efficiency. ACM Trans. Sens. Netw. 7(4), 33 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ilcinkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bampas, E., Czyzowicz, J., Ilcinkas, D., Klasing, R. (2015). Beachcombing on Strips and Islands. In: Bose, P., Gąsieniec, L., Römer, K., Wattenhofer, R. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2015. Lecture Notes in Computer Science(), vol 9536. Springer, Cham. https://doi.org/10.1007/978-3-319-28472-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28472-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28471-2

  • Online ISBN: 978-3-319-28472-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics