Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 551 Accesses

Abstract

In this chapter we aim to address the question: can high-redshift AGN drive galaxy-wide outflows of ionised gas in the absence of extremely powerful radio jets? Most theoretical models of galaxy evolution predict that this must be the case. We investigate eight \(z=1.4\)–3.4 ultra-luminous infrared galaxies (ULIRGs) that host active galactic nuclei (AGN) activity, including known sub-millimetre luminous galaxies (SMGs). The targets have radio luminosities that are typical of high-redshift ULIRGs (\(L_{1.4~\mathrm {GHz}}=10^{24}\)–10\(^{25}\) W Hz\(^{-1}\)) and therefore are not radio-loud AGN and do not host extremely powerful radio jets. We present integral-field spectroscopy observations, covering the [O iii]\(\lambda \lambda 4959{,}5007\) emission-line doublet. We de-couple kinematic components due to the galaxy dynamics and mergers from those due to outflows. The four systems with the most powerful AGN host the signatures of large-scale energetic outflows, that is, extremely broad [O iii] emission-line profiles (FWHM \({\approx }\) 700–1400 km s\(^{-1}\)) across \(\approx \) 4–15 kpc (i.e., across the extent of the host galaxies). The four less powerful AGN display weaker evidence for spatially extended outflows; however, this may be due, in-part, to the lower quality data for these objects. We estimate that the outflows are depositing energy into the gas in their host galaxies at considerable rates (i.e., \(\dot{E}{\approx } 10^{43}\)–10\(^{45}\) erg s\(^{-1}\)). Based on the measured maximum velocities (\(v_\mathrm{{max}}{\approx }\) 400–1400 km s\(^{-1}\)) we find that a large fraction of the gas is likely to become unbound from their host galaxies, but it is unlikely to be completely removed from the galaxy haloes. We show that the power of the growing black holes in these objects (i.e., the AGN activity) is likely to be the dominant power source for driving the outflows; however, star formation may also play a role in some of the sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This value is approximately the mean value for radio-identified SMGs with an observed range of roughly \(\alpha =\) 0.2–1.5, which includes AGN (Ibar et al. 2010). Here we define a spectral index \(\alpha \) such that flux density, \(S_{\nu }\), and frequency, \(\nu \), are related by \(S_{\nu } \propto \nu ^{-\alpha }\).

  2. 2.

    The one source from Swinbank et al. (2004) with FWHM \(>\) 700\(\,\hbox {km}\,\hbox {s}^{-1}\) that is not identified as an AGN (Fig. 3.7) has a complex spectrum and has not been covered by multi-wavelength observations in the literature. It is therefore not possible to rule out the presence of a significant AGN in this galaxy.

  3. 3.

    The source SMM J1237+6203 does not appear in this table. For this source we use a spatial extent of 5 kpc (see Fig. 3.6) and the FWHM and velocity offset from the galaxy-integrated spectrum (Table 3.3). See the end of Sect. 3.5.4 for details.

  4. 4.

    If we were to follow instead Dalla Vecchia and Schaye (2008) to estimate this energy input, the values would be a factor of \(\approx \)2 lower. Conversely, radiation pressure from star-formation could potentially contribute a comparable amount of pressure to stellar and supernovae winds in ULIRGs (Veilleux et al. 2005). As we are considering order of magnitude estimates only, these uncertainties do not affect our conclusions.

References

  • Alaghband-Zadeh, S., Chapman, S. C., Swinbank, A. M., et al.2012, MNRAS, 424, 2232

    Google Scholar 

  • Alexander, D. M., Bauer, F. E., Chapman, S. C., et al. 2005, ApJ, 632, 736

    Google Scholar 

  • Alexander, D. M., & Hickox, R. C. 2012, New A Rev., 56, 93

    Google Scholar 

  • Alexander, D. M., Swinbank, A. M., Smail, I., McDermid, R., & Nesvadba, N. P. H. 2010, MNRAS, 402, 2211

    Google Scholar 

  • Alexander, D. M., Bauer, F. E., Brandt, W. N., et al. 2003, AJ, 125, 383

    Google Scholar 

  • Alexander, D. M., Brandt, W. N., Smail, I., et al. 2008, AJ, 135, 1968

    Google Scholar 

  • Barth, A. J., Greene, J. E., & Ho, L. C. 2008, AJ, 136, 1179

    Google Scholar 

  • Best, P. N., Kaiser, C. R., Heckman, T. M., & Kauffmann, G. 2006, MNRAS, 368, L67

    Google Scholar 

  • Best, P. N., Kauffmann, G., Heckman, T. M., et al. 2005, MNRAS, 362, 25

    Google Scholar 

  • Binney, J., & Tremaine, S. 1987, Galactic dynamics, Princeton series in astrophysics (Princeton University Press)

    Google Scholar 

  • Cano-Díaz, M., Maiolino, R., Marconi, A., et al. 2012, A&A, 537, L8

    Google Scholar 

  • Cardamone, C. N., van Dokkum, P. G., Urry, C. M., et al. 2010, APJS, 189, 270

    Google Scholar 

  • Cattaneo, A., & Bernardi, M. 2003, MNRAS, 344, 45

    Google Scholar 

  • Chapman, S. C., Blain, A. W., Smail, I., & Ivison, R. J. 2005, ApJ, 622, 772

    Google Scholar 

  • Chapman, S. C., Smail, I., Blain, A. W., & Ivison, R. J. 2004, ApJ, 614, 671

    Google Scholar 

  • Clements, D. L., Vaccari, M., Babbedge, T., et al. 2008, MNRAS, 387, 247

    Google Scholar 

  • Colina, L., Arribas, S., & Borne, K. D. 1999, ApJL, 527, L13

    Google Scholar 

  • Colina, L., Arribas, S., & Monreal-Ibero, A. 2005, ApJ, 621, 725

    Google Scholar 

  • Coppin, K. E. K., Swinbank, A. M., Neri, R., et al. 2008, MNRAS, 389, 45

    Google Scholar 

  • Cowie, L. L., Barger, A. J., & Kneib, J.-P. 2002, AJ, 123, 2197

    Google Scholar 

  • Cox, T. J., Dutta, S. N., Di Matteo, T., et al. 2006, ApJ, 650, 791

    Google Scholar 

  • Crenshaw, D. M., Schmitt, H. R., Kraemer, S. B., Mushotzky, R. F., & Dunn, J. P. 2010, ApJ, 708, 419

    Google Scholar 

  • Dalla Vecchia, C., & Schaye, J. 2008, MNRAS, 387, 1431

    Google Scholar 

  • Danielson, A. L. R., Lehmer, B. D., Alexander, D. M., et al. 2012, MNRAS, 422, 494

    Google Scholar 

  • Debuhr, J., Quataert, E., & Ma, C.-P. 2012, MNRAS, 420, 2221

    Google Scholar 

  • Del Moro, A., Alexander, D. M., Mullaney, J. R., et al. 2013, A&A, 549, A59

    Google Scholar 

  • Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604

    Google Scholar 

  • Dimitrijević, M. S., Popović, L. Č., Kovačević, J., Dačić, M., & Ilić, D. 2007, MNRAS, 374, 1181

    Google Scholar 

  • Engel, H., Tacconi, L. J., Davies, R. I., et al. 2010, ApJ, 724, 233

    Google Scholar 

  • Faucher-Giguère, C.-A., & Quataert, E. 2012, MNRAS, 425, 605

    Google Scholar 

  • Greene, J. E., & Ho, L. C. 2005, ApJ, 627, 721

    Google Scholar 

  • Greene, J. E., Zakamska, N. L., Ho, L. C., & Barth, A. J. 2011, ApJ, 732, 9

    Google Scholar 

  • Hainline, L. J., Blain, A. W., Smail, I., et al. 2011, ApJ, 740, 96

    Google Scholar 

  • Hainline, L. J., Blain, A. W., Smail, I., et al. 2009, ApJ, 699, 1610

    Google Scholar 

  • Harrison, C. M., Alexander, D. M., Swinbank, A. M., et al. 2012, MNRAS, 426, 1073

    Google Scholar 

  • Heckman, T. M., Kauffmann, G., Brinchmann, J., et al. 2004, ApJ, 613, 109

    Google Scholar 

  • Heckman, T. M., Miley, G. K., van Breugel, W. J. M., & Butcher, H. R. 1981, ApJ, 247, 403

    Google Scholar 

  • Helou, G., Soifer, B. T., & Rowan-Robinson, M. 1985, ApJL, 298, L7

    Google Scholar 

  • Hickox, R. C., Wardlow, J. L., Smail, I., et al. 2012, MNRAS, 421, 284

    Google Scholar 

  • Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, APJS, 163, 1

    Google Scholar 

  • Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereš, D. 2008, APJS, 175, 356

    Google Scholar 

  • Hopkins, P. F., Hernquist, L., Martini, P., et al. 2005, ApJL, 625, L71

    Google Scholar 

  • Hopkins, P. F., Richards, G. T., & Hernquist, L. 2007, ApJ, 654, 731

    Google Scholar 

  • Ibar, E., Ivison, R. J., Best, P. N., et al. 2010, MNRAS, 401, L53

    Google Scholar 

  • Ivison, R. J., Papadopoulos, P. P., Smail, I., et al. 2011, MNRAS, 412, 1913

    Google Scholar 

  • Ivison, R. J., Smail, I., Papadopoulos, P. P., et al. 2010, MNRAS, 404, 198

    Google Scholar 

  • Ivison, R. J., Greve, T. R., Dunlop, J. S., et al. 2007, MNRAS, 380, 199

    Google Scholar 

  • Kennicutt, Jr., R. C. 1998, ARAA, 36, 189

    Google Scholar 

  • Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961

    Google Scholar 

  • King, A. R., Zubovas, K., & Power, C. 2011, MNRAS, 415, L6

    Google Scholar 

  • Kovács, A., Chapman, S. C., Dowell, C. D., et al. 2006, ApJ, 650, 592

    Google Scholar 

  • Le Tiran, L., Lehnert, M. D., van Driel, W., Nesvadba, N. P. H., & Di Matteo, P. 2011, A&A, 534, L4

    Google Scholar 

  • Ledlow, M. J., Smail, I., Owen, F. N., et al. 2002, ApJL, 577, L79

    Google Scholar 

  • Lehnert, M. D., Nesvadba, N. P. H., Le Tiran, L., et al. 2009, ApJ, 699, 1660

    Google Scholar 

  • Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, APJS, 123, 3

    Google Scholar 

  • Matsuoka, Y. 2012, ApJ, 750, 54

    Google Scholar 

  • McCarthy, I. G., Schaye, J., Bower, R. G., et al. 2011, MNRAS, 412, 1965

    Google Scholar 

  • Menéndez-Delmestre, K., Blain, A. W., Swinbank, M., et al. 2013, ApJ, 767, 151

    Google Scholar 

  • Menéndez-Delmestre, K., Blain, A. W., Smail, I., et al. 2009, ApJ, 699, 667

    Google Scholar 

  • Miller, N. A., Fomalont, E. B., Kellermann, K. I., et al. 2008, APJS, 179, 114

    Google Scholar 

  • Morrison, G. E., Owen, F. N., Dickinson, M., Ivison, R. J., & Ibar, E. 2010, APJS, 188, 178

    Google Scholar 

  • Mullaney, J. R., Alexander, D. M., Fine, S., et al. 2013, MNRAS, 433, 622

    Google Scholar 

  • Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563

    Google Scholar 

  • Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A., & van Breugel, W. 2007a, A&A, 475, 145

    Google Scholar 

  • Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M., & van Breugel, W. 2008, A&A, 491, 407

    Google Scholar 

  • Nesvadba, N. P. H., Lehnert, M. D., Eisenhauer, F., et al. 2006, ApJ, 650, 693

    Google Scholar 

  • Nesvadba, N. P. H., Polletta, M., Lehnert, M. D., et al. 2011, MNRAS, 415, 2359

    Google Scholar 

  • Nesvadba, N. P. H., Lehnert, M. D., Genzel, R., et al. 2007b, ApJ, 657, 725

    Google Scholar 

  • Rafferty, D. A., Brandt, W. N., Alexander, D. M., et al. 2011, ApJ, 742, 3

    Google Scholar 

  • Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005a, APJS, 160, 87

    Google Scholar 

  • Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005b, APJS, 160, 115

    Google Scholar 

  • Rupke, D. S. N., & Veilleux, S. 2011, ApJL, 729, L27+

    Google Scholar 

  • Sanders, D. B., Soifer, B. T., Elias, J. H., Neugebauer, G., & Matthews, K. 1988, ApJL, 328, L35

    Google Scholar 

  • Silk, J., & Rees, M. J. 1998, A&A, 331, L1

    Google Scholar 

  • Silverman, J. D., Green, P. J., Barkhouse, W. A., et al. 2008, ApJ, 679, 118

    Google Scholar 

  • Simpson, C., Rawlings, S., Ivison, R., et al. 2012, MNRAS, 421, 3060

    Google Scholar 

  • Simpson, J., Swinbank, M., Smail, I., et al. 2014, ApJ, 788

    Google Scholar 

  • Smail, I., Chapman, S. C., Ivison, R. J., et al. 2003, MNRAS, 342, 1185

    Google Scholar 

  • Smolčić, V., Zamorani, G., Schinnerer, E., et al. 2009, ApJ, 696, 24

    Google Scholar 

  • Springel, V., Di Matteo, T., & Hernquist, L. 2005, MNRAS, 361, 776

    Google Scholar 

  • Swinbank, A. M., Chapman, S. C., Smail, I., et al. 2006, MNRAS, 371, 465

    Google Scholar 

  • Swinbank, A. M., Smail, I., Chapman, S. C., et al. 2004, ApJ, 617, 64

    Google Scholar 

  • Swinbank, A. M., Smail, I., Bower, R. G., et al. 2005, MNRAS, 359, 401

    Google Scholar 

  • Tacconi, L. J., Genzel, R., Smail, I., et al. 2008, ApJ, 680, 246

    Google Scholar 

  • Takata, T., Sekiguchi, K., Smail, I., et al. 2006, ApJ, 651, 713

    Google Scholar 

  • Valiante, E., Lutz, D., Sturm, E., et al. 2007, ApJ, 660, 1060

    Google Scholar 

  • van de Voort, F., Schaye, J., Booth, C. M., & Dalla Vecchia, C. 2011, MNRAS, 415, 2782

    Google Scholar 

  • Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARAA, 43, 769

    Google Scholar 

  • Veilleux, S., Kim, D.-C., & Sanders, D. B. 1999, ApJ, 522, 113

    Google Scholar 

  • Villar-Martín, M., Humphrey, A., Delgado, R. G., Colina, L., & Arribas, S. 2011a, MNRAS, 418, 2032

    Google Scholar 

  • Villar-Martín, M., Tadhunter, C., Humphrey, A., et al. 2011b, MNRAS, 416, 262

    Google Scholar 

  • Wang, S. X., Brandt, W. N., Luo, B., et al. 2013, ApJ, 778, 179

    Google Scholar 

  • Wardlow, J. L., Smail, I., Coppin, K. E. K., et al. 2011, MNRAS, 415, 1479

    Google Scholar 

  • Westmoquette, M. S., Clements, D. L., Bendo, G. J., & Khan, S. A. 2012, MNRAS, 424, 416

    Google Scholar 

  • Willott, C. J., Rawlings, S., Blundell, K. M., & Lacy, M. 1998, MNRAS, 300, 625

    Google Scholar 

  • Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868

    Google Scholar 

  • Zheng, X. Z., Xia, X. Y., Mao, S., Wu, H., & Deng, Z. G. 2002, AJ, 124, 18

    Google Scholar 

  • Zubovas, K., & King, A. 2012, ApJL, 745, L34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harrison, C.M. (2016). Energetic Galaxy-Wide Outflows in High-z ULIRGs Hosting AGN Activity. In: Observational Constraints on the Influence of Active Galactic Nuclei on the Evolution of Galaxies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28454-5_3

Download citation

Publish with us

Policies and ethics