Skip to main content

The Fifth Force Since 1991

  • Chapter
  • First Online:
The Rise and Fall of the Fifth Force

Abstract

At the 1990 Moriond workshop, attended by many of those working on the Fifth Force, Orrin Fackler stated: “The Fifth Force is dead.” No one disagreed. At the time there was no evidence that such a force, as initially proposed, with a strength approximately 1 % that of the gravitational force and a range of about 100 m, existed. More formally, Eric Adelberger and other members of the Eöt-Wash group concluded (Adelberger et al. 1990, p. 3291):

We have made a sensitive, systematic search for interactions mediated by ultra-low-mass scalar or vector bosons using two different detector dipoles and two different sources. We find absolutely no evidence for any new interactions ascribable to such particles. Our results break new ground over ranges from roughly 1 AU down to roughly 30 cm,1 and are considerably more precise than any of those which claim evidence for ‘new physics’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This range included the suggested range for the Fifth Force of approximately 100 m.

  2. 2.

    The effects observed in both the original Eötvös experiment and in Thieberger’s experiment are still unexplained. Boynton’s initial results have been superseded by his later results.

  3. 3.

    This was similar to Bennett’s experiment at the lock on the Snake River, discussed in Part I.

  4. 4.

    These were discussed in Part I.

  5. 5.

    The group included Blayne Heckel, one of the leaders of the Eöt-Wash group.

  6. 6.

    Recall the earlier discussions of possible coupling to either baryon or lepton number.

  7. 7.

    The current uncertainty on the value of G is 120 ppm. The latest CODATA (Committee on Data for Science and Technology) value is (6. 673 84 ± 0. 000 80) × 10−11 m3 kg−1 s−2.

  8. 8.

    This appears to show an apparently repulsive gravitational force, a rather odd result. The force is, of course, attractive.

  9. 9.

    The group included Paul Boynton, who had reported both positive and negative earlier results on the Fifth Force. Boynton’s later negative results were regarded as superseding his earlier work.

  10. 10.

    The group also included Fischbach and Talmadge, two of the initial proposers of the Fifth Force hypothesis.

  11. 11.

    As we shall see below, this is not quite accurate.

  12. 12.

    The title of the paper was: “New tests of the universality of free fall.”

  13. 13.

    The group also stated that (Su et al. 1994, p. 3614):

    We also test Weber’s claim that solar neutrinos scatter coherently from single crystals with cross-sections \(\sim 10^{23}\) times larger than the generally accepted value and rule out the existence of such cross-sections.

    For a more detailed history of this episode see Franklin (2010).

  14. 14.

    The major purpose of the experiment, as the title of the paper reveals, was to measure G, the gravitational constant.

  15. 15.

    This experiment was similar to those of Moore et al. (1988) and Bennett (1989).

  16. 16.

    The Eöt-Wash group continued its whimsy with the naming of their new apparatus.

  17. 17.

    This was an improved version of the original Eöt-Wash torsion balance.

  18. 18.

    Focardi’s paper was presented at a conference in 2000, but the conference proceedings were not published until 2002.

  19. 19.

    For various personal reasons Bennett did not publish these results until 2001.

  20. 20.

    The title of their paper is: “Testing the equivalence principle on a trampoline.”

  21. 21.

    This was the approximate range suggested in the initial paper, based on the (later withdrawn) results of Stacey and his collaborators. The data of the Eötvös and his collaborators is consistent with ranges up to 1 AU.

  22. 22.

    These were the experiments which test the weak equivalence principle in the fall of bodies toward the Sun, viz., Braginskii and Panov (1972) and Roll et al. (1964).

  23. 23.

    As we saw in Part I and in the history presented above, this is not accurate.

  24. 24.

    See Footnote 22.

  25. 25.

    As we saw in Part I and in the history presented above, this is not accurate.

References

  • Achilli, V., Baldi, P., et al.: A geophysical experiment on Newton’s inverse-square law. Il Nuovo Cim. 112(B), 775–803 (1997)

    Google Scholar 

  • Adelberger, E., Gundlach, J.H., et al.: Torsion balance experiments: a low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 62, 102–134 (2009)

    Article  ADS  Google Scholar 

  • Adelberger, E.G., Heckel, B.R., et al.: Searches for new macroscopic forces. Annu. Rev. Nucl. Part. Sci. 41, 269–320 (1991)

    Article  ADS  Google Scholar 

  • Adelberger, E.G., Stubbs, C.W., et al.: Testing the equivalence principle in the field of the Earth: particle physics at masses below 1 \(\upmu\) eV. Phys. Rev. D 42, 3267–3292 (1990)

    Article  ADS  Google Scholar 

  • Baldi, P., Campari, E.G., et al.: Testing Newton’s inverse square law at intermediate scales. Phys. Rev. D 64, 082001-1–082001-7 (2001)

    Google Scholar 

  • Bennett, W.R.: Modulated-source Eötvös experiment at little goose lock. Phys. Rev. Lett. 62, 365–368 (1989)

    Article  ADS  Google Scholar 

  • Bennett, W.R.: Hunting the fifth force on the Snake river. In: Budker, D., Bucksbaum, P.H., Freedman, S.J. (eds.) Art and Symmetry in Experimental Physics. American Institute of Physics Conference Proceedings Series, vol. 596, pp. 123–155. American Institute of Physics, Melville, NY (2001)

    Google Scholar 

  • Braginskii, V.B., Panov, V.I.: Verification of the equivalence of inertial and gravitational mass. JETP Lett. 34, 463–466 (1972)

    Google Scholar 

  • Carusotto, S., Cavasinni, V., et al.: Test of g universality with a Galileo type experiment. Phys. Rev. Lett. 69, 1722–1725 (1992)

    Article  ADS  Google Scholar 

  • Carusotto, S., Cavasinni, V., et al.: Limits on the violation of G-universality with a Galileo-type experiment. Phys. Lett. A 183, 355–358 (1993)

    Article  ADS  Google Scholar 

  • Carusotto, S., Cavasinni, V., et al.: g-universality test with a Galileo-type experiment. Il Nuovo Cim. 111(B), 1259–1275 (1996)

    Google Scholar 

  • Cornaz, A., Hubler, B., et al.: Determination of the gravitational constant at an effective interaction distance of 112 m. Phys. Rev. Lett. 72, 1152–155 (1994)

    Article  ADS  Google Scholar 

  • Cruz, J.Y., Harrison, J.C., et al.: A test of Newton’s inverse square law of gravitation using the 300-m tower at Erie, Colorado. J. Geophys. Res. 96, 20073–20092 (1991)

    Article  ADS  Google Scholar 

  • Darwin, G.H.: Periodic orbits. Acta Math. 21, 99–242 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  • Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits: I. Theory. Icarus 48, 1–11 (1981)

    Article  ADS  Google Scholar 

  • Dittus, H., Mehls, C.: A new experimental baseline for testing the weak equivalence principle at the Bremen drop tower. Class. Quantum Gravity 18, 2417–2425 (2001)

    Article  ADS  MATH  Google Scholar 

  • Faller, J.E.: The measurement of little g: a fertile ground for precision measurement science. J. Res. Nat. Inst. Stand. Technol. 110, 559–581 (2005)

    Article  Google Scholar 

  • Fischbach, E., Aronson, S.H., et al.: Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 56, 3–6 (1986)

    Article  ADS  Google Scholar 

  • Fischbach, E., Talmadge, C.: Six years of the fifth force. Nature 356, 207–215 (1992)

    Article  ADS  Google Scholar 

  • Fitch, V.L., Isaila, M.V., et al.: Limits on the existence of a material-dependent intermediate-range force. Phys. Rev. Lett. 60, 1801–1804 (1988)

    Article  ADS  Google Scholar 

  • Focardi, S.: Newton’s gravitational law. In: Cianci, R., Collina, R., Francaviglia, M., Fre, P. (eds.) Recent Developments in General Relativity, Genoa 2000, pp. 417–421. Springer, Genoa (2002)

    Chapter  Google Scholar 

  • Franklin, A.: The Neglect of Experiment. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  • Franklin, A.: Gravity waves and neutrinos: the later work of Joseph Weber. Perspect. Sci. 18, 119–151 (2010)

    Article  Google Scholar 

  • Gillies, G.T.: The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60, 151–225 (1997)

    Article  ADS  Google Scholar 

  • Gundlach, J.H.: Laboratory test of gravity. New J. Phys. 7, 205-1–205-22 (2005)

    Google Scholar 

  • Gundlach, J.H., Schlamminger, S., et al.: Laboratory tests of the equivalence principle at the university of Washington. Space Sci. Rev. 148, 201–216 (2009)

    Article  ADS  Google Scholar 

  • Gundlach, J.H., Smith, G.L., et al.: Short-range test of the equivalence principle. Phys. Rev. Lett. 78, 2523–2526 (1997)

    Article  ADS  Google Scholar 

  • Heckel, B., Adelberger, E., et al.: Results on the strong equivalence principle, dark matter, and new forces. Adv. Space Res. 25, 1225–1230 (2000a)

    Article  ADS  Google Scholar 

  • Heckel, B.R., Adelberger, E.G., et al.: Torsion balance test of coupled forces. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds.) Quantum Gravity, Generalized Theory of Gravitation, and Superstring Theory-Based Unification, pp. 153–160. Plenum, New York (2000b)

    Google Scholar 

  • Hermann, S., Dittus, H., et al.: Testing the equivalence principle with atomic interferometry. Class. Quantum Gravity 29 (18), 184003-1–184003-12 (2012)

    Google Scholar 

  • Kuroda, K., Mio, N.: Limits on a possible composition-dependent force by a Galilean experiment. Phys. Rev. D 42, 3903–3907 (1990)

    Article  ADS  Google Scholar 

  • Liu, Y.-C., Yang, X.-S., et al.: Testing non-Newtonian gravitation on a 320 m tower. Phys. Lett. A 169, 131–133 (1992)

    Article  ADS  Google Scholar 

  • Moffat, J.W., Gillies, G.T.: Satellite Eötvös test of the weak equivalence principle for zero-point vacuum energy. New J. Phys. 4, 92.1–92.6 (2002)

    Article  Google Scholar 

  • Moore, M.W., Boudreaux, A., et al.: Testing the inverse-square law of gravity: a new class of torsion pendulum null experiments. Class. Quantum Gravity 6, A97–A117 (1994)

    Article  Google Scholar 

  • Moore, G.I., et al.: Determination of the gravitational constant at an effective mass separation of 22 m. Phys. Rev. D 38, 1023–1029 (1988)

    Article  ADS  Google Scholar 

  • Niebauer, T.M., McHugh, M.P., et al.: Galilean test for the fifth force. Phys. Rev. Lett. 59, 609–612 (1987)

    Article  ADS  Google Scholar 

  • Nobili, A.M., Bramanti, D., et al.: The ‘Galileo–Galilei’ (GG) project: testing the equivalence principle in space and on Earth. Adv. Space Res. 25, 1231–1235 (2000)

    Article  ADS  MATH  Google Scholar 

  • Pace, E., De Martini, F., et al.: A capacitive detector to test the principle of equivalence in a free fall experiment. Rev. Sci. Inst. 63, 3112–3119 (1992)

    Article  ADS  Google Scholar 

  • Reasenberg, R.D., Phillips, J.D.: Testing the equivalence principle on a trampoline. Class. Quantum Gravity 18, 2435–2445 (2001)

    Article  ADS  MATH  Google Scholar 

  • Roll, P.G., Krotkov, R., Dicke, R.: The equivalence of inertial and passive gravitational mass. Ann. Phys. 26, 442–517 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Romaides, A.J., Sands, R.W., et al.: Second tower experiment: further evidence for Newtonian gravity. Phys. Rev. D 50, 3608–3613 (1994)

    Article  ADS  Google Scholar 

  • Romaides, A.J., Sands, R.W., et al.: Final results from the WABG tower gravity experiment. Phys. Rev. D 55, 4532–4536 (1997)

    Article  ADS  Google Scholar 

  • Sanders, A.J., Deeds, W.E.: Proposed new determination of the gravitational constant G and tests of Newtonian gravitation. Phys. Rev. D 46, 480–504 (1992)

    Article  ADS  Google Scholar 

  • Schlamminger, S., Choi, K.Y., et al.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101-1–041101-4 (2008)

    Google Scholar 

  • Slobodrian, R.J.: Study of new fundamental forces in a microgravity environment. Class. Quantum Gravity 9, 1115–1119 (1992)

    Article  ADS  Google Scholar 

  • Smith, G.L., Hoyle, C.D., et al.: Short-range tests of the equivalence principle. Phys. Rev. D 61, 022001-1–022001-20 (2000a)

    Google Scholar 

  • Su, Y., Heckel, B.R., et al.: New tests of the universality of free fall. Phys. Rev. D 50, 3614–3636 (1994)

    Article  ADS  Google Scholar 

  • Thieberger, P.: Search for a substance-dependent force with a new differential accelerometer. Phys. Rev. Lett. 58, 1066–1069 (1987c)

    Article  ADS  Google Scholar 

  • Unnikrishnan, C.S.: Search for a 5th force. Pramana J. Phys. 41(Supplement S), 395–411 (1993)

    Google Scholar 

  • Venema, B.J., Majumder, P.K., et al.: Search for a coupling of the Earth’s gravitational field to nuclear spins in atomic mercury. Phys. Rev. Lett. 68, 135–138 (1992)

    Article  ADS  Google Scholar 

  • Wagner, T.A., Schlamminger, S., et al.: Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 29(18), 184002-1–184002-15 (2012)

    Google Scholar 

  • Will, C.W.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 1–117 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yang, X., Liu, W., et al.: Testing the intermediate-range force at separations around 50 meters. Chin. Phys. Lett. 8, 329–332 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franklin, A., Fischbach, E. (2016). The Fifth Force Since 1991. In: The Rise and Fall of the Fifth Force. Springer, Cham. https://doi.org/10.1007/978-3-319-28412-5_5

Download citation

Publish with us

Policies and ethics