Skip to main content

Dynamics, Controllability, and Control of Intensified Processes

  • Chapter
  • First Online:
Process Intensification in Chemical Engineering

Abstract

The arts of design, optimize, and control of chemical processes should be considered simultaneously [Chem Eng Sci 38:1881–1891, 1983; Chem Eng Process Process Intensif 52:1–15, 2012]. Nevertheless, in the case of process intensification the most common situation is that design is performed as first stage (following mass/energy integration guidelines), secondly processes are optimized (costs, profit, environmental impact), and finally a control scheme is adopted. Additionally, it is necessary to consider that intensification generates new process dynamics (different responses and characteristic times) and reduces, notoriously, the number of manipulate variables available for control. Hence, the original difficult tasks of partial control and stability of both, process and control [Chem Eng J 92:69–79, 2003], becomes more complicated. This chapter is devoted to the analysis of the problems mentioned above, which are inherent to any chemical process although more evident during process intensification. Some special features of the control are identified and some suggestions are given to enface problems that arise after the intensification of some separation and reaction/separation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bristol EH (1966) On a new measure of interaction for multivariable process control. IEEE Trans Autom Control AC-11:133–134

    Article  Google Scholar 

  2. Grosdidier P, Morari M, Holt BR (1985) Closed-loop properties from steady-state gain information. Ind Eng Chem Fundam 24:221–235

    Article  CAS  Google Scholar 

  3. Skogestad S, Morari M (1987) Implications of large RGA elements on control performance. Ind Eng Chem Res 26:2323–2330

    Article  CAS  Google Scholar 

  4. Skogestad S, Morari M (1987) Effect of disturbance directions on closed-loop performance. Ind Eng Chem Res 26:2029–2035

    Article  CAS  Google Scholar 

  5. Morari M (1992). Effect of design on the controllability of chemical plants. In: IFAC workshop on interactions between process design and process control, September 6-8, London, UK

    Google Scholar 

  6. Maya-Yescas R, Aguilar R (2003) Controllability assessment approach for chemical reactors: nonlinear control affine systems. Chem Eng J 92:69–79

    Article  CAS  Google Scholar 

  7. Economou CE, Morari M (1986) Internal model control. 5. Extension to nonlinear systems. Ind Eng Chem Process Des Dev 25:403–411

    Article  CAS  Google Scholar 

  8. Rivera DE, Morari M, Skogestad S (1986) Internal model control. 4. PID controller design. Ind Eng Chem Process Des Dev 25:252–263

    Article  CAS  Google Scholar 

  9. Aguilar-López R, Martínez-Guerra R, Maya-Yescas R (2003) State estimation for partially unknown nonlinear systems: a class of integral high gain observers. IEE Proc Control Theory Appl 150:240–244

    Article  Google Scholar 

  10. Daoutidis P, Soroush M, Kravaris C (1990) Feedforward/feedback control of multivariable nonlinear processes. AIChE J 36:1471–1484

    Article  CAS  Google Scholar 

  11. Nikačević NM, Huesman AEM, Van den Hof PMJ, Stankiewicz AI (2012) Opportunities and challenges for process control in process intensification. Chem Eng Process Process Intensif 52:1–15

    Article  Google Scholar 

  12. Ogunnaike BA (1986) Controller design for nonlinear processes via variable transformations. Ind Eng Chem Process Des Dev 25:241–248

    Article  CAS  Google Scholar 

  13. Precupa R-E, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comput Ind 62:213–226

    Article  Google Scholar 

  14. Aguilar-López R, Maya-Yescas R (2005) State estimation for nonlinear systems under model uncertainties: a class of sliding-mode observers. J Process Control 15:363–370

    Article  Google Scholar 

  15. Daoutidis P, Kravaris C (1991) Inversion and zero dynamics in nonlinear multivariable control. AIChE J 37:527–538

    Article  CAS  Google Scholar 

  16. Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, London

    Book  Google Scholar 

  17. Morari M (1983) Design of resilient processing plants-III. A general framework for the assessment of dynamic resilience. Chem Eng Sci 38:1881–1891

    Article  Google Scholar 

  18. Aguilar-López R, Maya-Yescas R (2008) Inverse dynamics: a problem on transient controllability for industrial plants. Inverse Probl Sci Eng 16:811–827

    Article  Google Scholar 

  19. Perko L (2001) Differential equations and dynamical systems, 3rd edn. Springer, New York

    Book  Google Scholar 

  20. Aguilar-Lopez R, Mata-Machuca J, Martinez-Guerra R (2010) On the observability for a class of nonlinear (bio) chemical systems. Int J Chem Reactor Eng 8(1): Article 3

    Google Scholar 

  21. Hespanha JP (2009) Linear systems theory. Princeton University Press, Princeton

    Google Scholar 

  22. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng: 82:35–45

    Article  Google Scholar 

  23. Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam

    Google Scholar 

  24. Tornambé A (1992) High-gain observers for nonlinear systems. Int J Syst Sci 23:1475–1489

    Article  Google Scholar 

  25. Drakunov SV, Utkin VI (1995). Sliding mode observers. Tutorial. In: Proceedings of the 34th conference on decision 81 control, New Orleans, USA, December 1995, pp 3376–3378

    Google Scholar 

  26. Drakunov SV, Utkin VI (1992) Sliding mode control in dynamic systems. Int J Control 55:1029–1037

    Article  Google Scholar 

  27. Slotine J, Li W (1991) Applied non-linear control. Prentice Hall, Englewood Cliffs

    Google Scholar 

  28. Edwards C, Spurgeon SK (1998) Sliding mode control. Taylor & Francis, London

    Google Scholar 

  29. Fridman L, Shtessel YB, Edwards C, Yan X-G (2008) Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int J Robust Nonlinear Control 18:399–412

    Article  Google Scholar 

  30. Shtessel Y, Edwards C, Fridman L, Levant A (2013) Sliding-mode control and observation. Control engineering. Springer, New York

    Google Scholar 

  31. Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems application to bioreactors. IEEE Trans Autom Control 37:875–880

    Article  Google Scholar 

  32. Aguilar-López R, Maya-Yescas R (2006) Robust temperature stabilization for fluid catalytic cracking units using extended Kalman-type estimators. Chem Prod Process Model 1:1–20, Article 3

    Google Scholar 

  33. Aguilar-Sierra H, Martinez-Guerra R, Mata-Machuca J (2011) Fault diagnosis via a polynomial observer. In: 8th international conference on electrical engineering computing science and automatic control, Merida, pp 121–126

    Google Scholar 

  34. Mata-Machuca J, Martinez-Guerra R, Aguilar-Lopez R (2010) An exponential polynomial observer for synchronization of chaotic systems. Commun Nonlinear Sci Numer Simulat 15:4114–4130

    Article  Google Scholar 

  35. Vázquez-Ojeda M, Segovia-Hernández JG, Hernández S, Hernández-Aguirre A, Maya-Yescas R (2012) Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Ind Eng Chem Res 51:5856–5865

    Article  Google Scholar 

  36. di Felice R, de Favery D, de Andreis P, Ottonello P (2008) Component distribution between light and heavy phases in biodiesel processes. Ind Eng Chem Res 47:7862

    Article  Google Scholar 

  37. Cornejo-Jacob JL, Vázquez-Ojeda M, Segovia-Hernández JG, Hernández S, Maya-Yescas R (2013) Comparación de gasto energético y desempeño a lazo cerrado de secuencias de destilación reactiva y térmicamente acopladas para producción de biodiesel (in Spanish). In: X International Congress on Innovation and Technologic Development (CIINDET 2013), Cuernavaca, Morelos, México, March 13–15, 2013: Article # 621

    Google Scholar 

  38. Segovia-Hernández JG, Hernández-Vargas EA, Márquez-Muñoz JA, Hernández S, Jiménez A (2005) Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns. Chem Biochem Eng Quart 19:325–332

    Google Scholar 

  39. Jiménez-García G, Aguilar-López R, Maya-Yescas R (2011) The fluidized-bed catalytic cracking unit building its future environment. Fuel 90:3531–3541

    Article  Google Scholar 

  40. Corella J (2004) On the modelling of the kinetics of the selective deactivation of catalysts. Application to the fluidized catalytic cracking process. Ind Eng Chem Res 43:4080–4086

    Article  CAS  Google Scholar 

  41. Froment GF, Bishoff KB, de Wilde J (2011) Chemical reactor analysis and design, 3rd edn. Wiley, New York

    Google Scholar 

  42. Aguilar-López R, Alvarez-Ramírez J (2002) Sliding-mode control scheme for a class of continuous chemical reactors. IEE Proc Control Theory Appl 149:263–268

    Article  Google Scholar 

  43. Alvarez-Ramirez J, Aguilar R, López-Isunza F (1996) Robust regulation of temperature in reactor-regenerator fluid catalytic cracking units. Ind Eng Chem Res 35:1652–1659

    Article  CAS  Google Scholar 

  44. Hovd M, Skogestad S (1993) Procedure for regulatory control structure selection with application to the FCC process. AIChE J 39:1938–1953

    Article  CAS  Google Scholar 

  45. Aguilar-López R (2003) Integral observers for uncertainty estimation in continuous chemical reactors: differential-algebraic approach. Chem Eng J 9:113–120

    Article  Google Scholar 

  46. Kravaris C, Palanki S (1988) Robust nonlinear state feedback under unstructured uncertainty. AIChE J 7:1119–1127

    Article  Google Scholar 

  47. Deza F, Busvelle E, Gauthier JP, Rakotopara D (1992) High gain estimation for nonlinear systems. Syst Control Lett 18:295–299

    Article  Google Scholar 

  48. Grosdidier P, Mason A, Aitolahti A, Vanhumaki V (1993) FCC unit regenerator-reactor control. Comput Chem Eng 17:165–179

    Article  CAS  Google Scholar 

  49. Kurihara H (1967) Optimal control of fluid catalytic cracking process. PhD dissertation, MIT, Cambridge

    Google Scholar 

  50. Taskin H, Kubat C, Uygun Ö, Arslankaya S (2006) FUZZY-FCC: fuzzy logic control of a fluid catalytic cracking unit to improve dynamic performance. Comput Chem Eng 30:850–863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank a lot grants provided by the National System of Researchers (CONACYT) that helps to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Maya-Yescas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maya-Yescas, R., Aguilar-López, R., Jiménez-García, G. (2016). Dynamics, Controllability, and Control of Intensified Processes. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_11

Download citation

Publish with us

Policies and ethics