Skip to main content

Kidney

  • Chapter
  • First Online:
  • 590 Accesses

Abstract

Regenerative medicine is an area of intense excitement and potential. Despite the increasing rate of end-stage renal disease, dialysis and transplantation remain the only treatment options to date. However, there is hope that stem cells and regenerative medicine may procure additional therapeutic options for renal disease. Such new treatment options may include induction of repair using endogenous or exogenous stem cells or the reprogramming of the kidney to reinitiate development. This chapter reviews the current state of understanding with respect to stem cell functions in the kidney, regenerative principles in kidney diseases, as well as clinical implications and implementation of regenerative medicine in renal disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abouna GM, Al-Adnani MS, Kremer GD, Kumar SA, Daddah SK, Kusma G (1983) Reversal of diabetic nephropathy in human cadaveric kidneys after transplantation into non-diabetic recipients. Lancet 2:1274–1276

    Article  CAS  PubMed  Google Scholar 

  • Adams DC, Oxburgh L (2009) The long-term label retaining population of the renal papilla arises through divergent regional growth of the kidney. Am J Physiol Renal Physiol 297(3):F809–F815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30:1714–1725

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahlmann FH, DeGroot K, Duckert T et al (2003) Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 64:1648–1652

    Article  CAS  PubMed  Google Scholar 

  • Barasch J, Pressler L, Connor J, Malik A (1996) A ureteric bud cell line induces nephrogenesis in two steps by two distinct signals. Am J Physiol 271:F50–F61

    CAS  PubMed  Google Scholar 

  • Behrens A, van Deursen JM, Rudolph KL, Schumacher B (2014) Impact of genomic damage and ageing on stem cell function. Nat Cell Biol 16(3):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    Article  CAS  PubMed  Google Scholar 

  • Broekema M, Harmsen MC, Koerts JA et al (2005) Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats. Kidney Int 68:2572–2581

    Article  PubMed  Google Scholar 

  • Bussolati B, Bruno S, Grange C et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussolati B, Hauser PV, Carvalhosa R, Camussi G (2009) Contribution of stem cells to kidney repair. Curr Stem Cell Res Ther 4:2–8

    Article  CAS  PubMed  Google Scholar 

  • Cha JH, Kim YH, Jung JY, Han KH, Madsen KM, Kim J (2001) Cell proliferation in the loop of henle in the developing rat kidney. J Am Soc Nephrol 12:1410–1421

    CAS  PubMed  Google Scholar 

  • Chade AR, Zhu X, Lavi R et al (2009) Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation 119:547–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Chade AR, Zhu XY, Krier JD, Jordan KL, Textor SC, Grande JP, Lerman A, Lerman LO (2010) Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells 28(6):1039–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornacchia F, Fornoni A, Plati AR et al (2001) Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest 108:1649–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  CAS  PubMed  Google Scholar 

  • Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15(9):1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JA, Bard JB (1996) Inductive interactions between the mesenchyme and the ureteric bud. Exp Nephrol 4:77–85

    CAS  PubMed  Google Scholar 

  • Diep CQ, Ma D, Deo RC, Holm TM, Naylor RW, Arora N, Wingert RA, Bollig F, Djordjevic G, Lichman B, Zhu H, Ikenaga T, Ono F, Englert C, Cowan CA, Hukriede NA, Handin RI, Davidson AJ (2011) Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470(7332):95–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dressler GR (1997) Genetic control of kidney development. Adv Nephrol Necker Hosp 26:1–17

    CAS  PubMed  Google Scholar 

  • Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    CAS  PubMed  Google Scholar 

  • Duffield JS, Bonventre JV (2005) Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 68:1956–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easterday MC, Dougherty JD, Jackson RL et al (2003) Neural progenitor genes. Germinal zone expression and analysis of genetic overlap in stem cell populations. Dev Biol 264:309–322

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi B, Li Z, Eirin A, Zhu XY, Textor SC, Lerman LO (2012) Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. Am J Physiol Renal Physiol 302(11:F1478–F1485). doi: 10.1152/ajprenal.00563.2011. Epub 2012 Mar 14

    Google Scholar 

  • Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150

    CAS  PubMed  Google Scholar 

  • Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14(6):1506–1518

    Article  PubMed  Google Scholar 

  • El-Nahas AM (2003) Plasticity of kidney cells: role in kidney remodeling and scarring. Kidney Int 64:1553–1563

    Article  CAS  PubMed  Google Scholar 

  • Fleig SV, Humphreys BD (2014) Rationale of mesenchymal stem cell therapy in kidney injury. Nephron Clin Pract 127(1–4):75–80

    Article  CAS  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62:1285–1290

    Article  PubMed  Google Scholar 

  • Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478

    Article  CAS  PubMed  Google Scholar 

  • He C, Esposito C, Phillips C et al (1996) Dissociation of glomerular hypertrophy, cell proliferation, and glomerulosclerosis in mouse strains heterozygous for a mutation (Os) which induces a 50% reduction in nephron number. J Clin Invest 97:1242–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeschen C, Aicher A, Lehmann R et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–1041

    PubMed  Google Scholar 

  • Herrera MB, Bussolati B, Bruno S et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441

    Article  CAS  PubMed  Google Scholar 

  • Herzlinger D (1994) Renal stem cells and the lineage of the nephron. Annu Rev Physiol 56:671–689

    Article  CAS  PubMed  Google Scholar 

  • Herzlinger D, Koseki C, Mikawa T, al-Awqati Q, (1992) Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development 114:565–572

    CAS  PubMed  Google Scholar 

  • Hishikawa K, Fujita T (2006) Stem cells and kidney disease. Hypertens Res 29:745–749

    Article  CAS  PubMed  Google Scholar 

  • Hishikawa K, Marumo T, Miura S et al (2005a) Leukemia inhibitory factor induces multi-lineage differentiation of adult stem-like cells in kidney via kidney-specific cadherin 16. Biochem Biophys Res Commun 328:288–291

    Article  CAS  PubMed  Google Scholar 

  • Hishikawa K, Marumo T, Miura S et al (2005b) Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 169:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horster M (1985) Ontogenetic processes in nephron epithelia: function, enzymes, and structure. In: Giebisch DWSG (ed) The kidney: physiology and pathophysiology. Raven, New York

    Google Scholar 

  • Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79:1157–1191

    CAS  PubMed  Google Scholar 

  • Hugo C, Shankland SJ, Bowen-Pope DF, Couser WG, Johnson RJ (1997) Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. J Clin Invest 100:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humes HD, Krauss JC, Cieslinski DA, Funke AJ (1996) Tubulogenesis from isolated single cells of adult mammalian kidney: clonal analysis with a recombinant retrovirus. Am J Physiol 271:F42–F49

    CAS  PubMed  Google Scholar 

  • Humes HD, Weitzel WF, Bartlett RH et al (2004) Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int 66:1578–1588

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 108(22):9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imasawa T, Utsunomiya Y, Kawamura T et al (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe L, Gordon K, Hugo C et al (1995) Participation of glomerular endothelial cells in the capillary repair of glomerulonephritis. Am J Pathol 147:1715–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaka Y, Brees DK, Ikegaya K et al (1996) Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 2:418–423

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635

    CAS  PubMed  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  • Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A, Rudolph KL (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13(6):742–747

    Article  CAS  PubMed  Google Scholar 

  • Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura S, Yamasaki Y, Kinomura M et al (2005) Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 19:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3(4):650–662

    Article  CAS  Google Scholar 

  • Koseki C, Herzlinger D, al-Awqati Q, (1991) Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am J Physiol 261:C550–C554

    CAS  PubMed  Google Scholar 

  • Koseki C, Herzlinger D, al-Awqati Q, (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Kunter U, Rong S, Djuric Z et al (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212

    Article  CAS  PubMed  Google Scholar 

  • Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD (2014) Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A 111(4):1527–1532

    Article  CAS  PubMed  Google Scholar 

  • Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH (2001) Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 357:33–37

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Togel F, Ittrich H et al (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68:1613–1617

    Article  PubMed  Google Scholar 

  • Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci U S A 97:13473–13475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ariunbold U, Suhaimi N, Sunn N, Guo J, McMahon JA, McMahon AP, Little M (2015) Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity. J Am Soc Nephrol 26(1):81–94

    Article  PubMed  CAS  Google Scholar 

  • Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17:2390–2401

    Article  PubMed  Google Scholar 

  • Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK (2003) Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 111:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuya M, Drake CJ, Fleming PA et al (2003) Hematopoietic origin of glomerular mesangial cells. Blood 101:2215–2218

    Article  CAS  PubMed  Google Scholar 

  • McTaggart SJ, Atkinson K (2007) Mesenchymal stem cells: immunobiology and therapeutic potential in kidney disease. Nephrology (Carlton) 12:44–52

    Article  CAS  Google Scholar 

  • Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  • Ninichuk V, Gross O, Segerer S et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70:121–129

    Article  CAS  PubMed  Google Scholar 

  • Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmsted-Davis EA, Gugala Z, Camargo F et al (2003) Primitive adult hematopoietic stem cells can function as osteoblast precursors. Proc Natl Acad Sci U S A 100:15877–15882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabst R, Sterzel RB (1983) Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int 24:626–631

    Article  CAS  PubMed  Google Scholar 

  • Poulsom R, Forbes SJ, Hodivala-Dilke K et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235

    Article  CAS  PubMed  Google Scholar 

  • Prodromidi EI, Poulsom R, Jeffery R et al (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24:2448–2455

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Cohen D, Herzlinger D (1995) The metanephric blastema differentiates into collecting system and nephron epithelia in vitro. Development 121:3207–3214

    CAS  PubMed  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  • Rookmaaker MB, Tolboom H, Goldschmeding R, Zwaginga JJ, Rabelink TJ, Verhaar MC (2002) Bone-marrow-derived cells contribute to endothelial repair after thrombotic microangiopathy. Blood 99:1095

    Article  CAS  PubMed  Google Scholar 

  • Rookmaaker MB, Smits AM, Tolboom H et al (2003) Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol 163:553–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Rookmaaker MB, Verhaar MC, van Zonneveld AJ, Rabelink TJ (2004) Progenitor cells in the kidney: biology and therapeutic perspectives. Kidney Int 66:518–522

    Article  PubMed  Google Scholar 

  • Rookmaaker MB, Verhaar MC, de Boer HC et al (2007) Met-RANTES reduces endothelial progenitor cell homing to activated (glomerular) endothelium in vitro and in vivo. Am J Physiol Renal Physiol 293:F624–F630

    Article  CAS  PubMed  Google Scholar 

  • Sariola H, Ekblom P, Lehtonen E, Saxen L (1983) Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol 96:427–435

    Article  CAS  PubMed  Google Scholar 

  • Saxen L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol 1:385–392

    Article  CAS  PubMed  Google Scholar 

  • Saxen L, Salonen J, Ekblom P, Nordling S (1983) DNA synthesis and cell generation cycle during determination and differentiation of the metanephric mesenchyme. Dev Biol 98:130–138

    Article  CAS  PubMed  Google Scholar 

  • Schmitt R, Cantley LG (2008) The impact of aging on kidney repair. Am J Physiol Renal Physiol 294(6):F1265–F1272

    Article  CAS  PubMed  Google Scholar 

  • Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial Progenitors Exist within the Kidney and Lung Mesenchyme. PLoS ONE 8(6):e65993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeets B, Boor P, Dijkman H, Sharma SV, Jirak P, Mooren F, Berger K, Bornemann J, Gelman IH, Floege J, van der Vlag J, Wetzels JF, Moeller MJ (2013) Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 229(5):645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino SA, Bahlmann FH, Besler C et al (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116:163–173

    Article  CAS  PubMed  Google Scholar 

  • Starke C, Betz H, Hickmann L, Lachmann P, Neubauer B, Kopp JB, Sequeira-Lopez ML, Gomez RA, Hohenstein B, Todorov VT, Hugo CP (2015) Renin lineage cells repopulate the glomerular mesangium after injury. J Am Soc Nephrol 26(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A 103:7321–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W Jr, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18(3):396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Huynh-Do U, Daniel TO (1998) Renal microvascular assembly and repair: power and promise of molecular definition. Kidney Int 53:826–835

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Toback FG (1992) Regeneration after acute tubular necrosis. Kidney Int 41:226–246

    Article  CAS  PubMed  Google Scholar 

  • Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289:F31–F42

    Article  PubMed  CAS  Google Scholar 

  • Uchimura H, Marumo T, Takase O et al (2005) Intrarenal injection of bone marrow-derived angiogenic cells reduces endothelial injury and mesangial cell activation in experimental glomerulonephritis. J Am Soc Nephrol 16:997–1004

    Article  PubMed  Google Scholar 

  • Wang Y, He J, Pei X, Zhao W (2013) Systematic review and meta-analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models. Nephrology (Carlton) 18(3):201–208

    Article  CAS  Google Scholar 

  • Williams GM, Alvarez CA (1969) Host repopulation of the endothelium in allografts of kidneys and aorta. Surg Forum 20:293–294

    CAS  PubMed  Google Scholar 

  • Wong CY, Cheong SK, Mok PL, Leong CF (2008) Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology 40:52–57

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Haller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmitt, R., Sorrentino, S., Haller, H. (2016). Kidney. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28386-9_7

Download citation

Publish with us

Policies and ethics