Skip to main content

Muscle, Ligament and Tendon Regeneration

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

Muscle injury and degenerative muscle diseases are disabling conditions that are currently challenging orthopedic surgeons, neurologist and specialists in rehabilitative medicine. Upon traumatic or degenerative changes in the structure of the muscle, regeneration befalls mainly by increased proliferation of satellite cells. If the injury is extensive fibrosis and scar tissue formation occurs. Till now various alternative therapeutic ways have been proposed to boost muscle regeneration. These methods include the use of growth factors, antioxidative therapeutic approaches, cell based therapy and cell transplantation as well as the use of scaffolds. Growth factors, antioxidative substances and endogenous polypeptides can not only influence but also control the natural repair processes by acting on different intracellular pathways. Cell orientated therapies have been popular in muscle regeneration mainly because small quantities of cells are needed to achieve therapeutic effects. Transplantation of stem cells, myoblasts or genetically modified cells, have been used after injury to restore muscle structure and function. Furthermore, scaffolds have been used to repair muscle defects and to generate new muscle fibers.

Similar approaches have been made for regeneration of tendon and ligament. There are a number of cell sources that are potentially helpful for cell mediated tissue regeneration. Scaffolds provide temporary mechanical support and can carry cells that promote the tendon and ligament regeneration. Furthermore, growth factors can be used to stimulate tissue healing and accelerate regeneration mainly by modulating the proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiel D, Kleiner JB, Roux RD et al (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4:162–172

    Article  CAS  PubMed  Google Scholar 

  • Arai C, Ohnuki Y, Umeki D et al (2006) Effects of clenbuterol and cyclosporin a on the myosin heavy chain mRNA level and the muscle mass in rat masseter. J Physiol Sci 56:205–209

    Article  CAS  PubMed  Google Scholar 

  • Armour J, Tyml K, Lidington D et al (2001) Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol 90:795–803

    CAS  PubMed  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Barton ER, Morris L, Musaro A et al (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskin CR, Hinchcliff KW, DiSilvestro RA et al (2000) Effects of dietary antioxidant supplementation on oxidative damage and resistance to oxidative damage during prolonged exercise in sled dogs. Am J Vet Res 61:886–891

    Article  CAS  PubMed  Google Scholar 

  • Bolcal C, Yildirim V, Doganci S et al (2007) Protective effects of antioxidant medications on limb ischemia reperfusion injury. J Surg Res 139:274–279

    Article  CAS  PubMed  Google Scholar 

  • Branford OA, Klass BR, Grobbelaar AO et al (2014) The growth factors involved in flexor tendon repair and adhesion formation. J Hand Surg Eur 39:60–70

    Article  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Ciciliot S, Schiaffino S (2009) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16(8):906–914

    Article  Google Scholar 

  • Cooper JA, Lu HH, Ko FK et al (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Corbel SY, Lee A, Yi L et al (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9:1528–1532

    Article  CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F et al (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918

    Article  PubMed  PubMed Central  Google Scholar 

  • Deehan DJ, Cawston TE (2005) The biology of integration of the anterior cruciate ligament. J Bone Joint Surg Br 87:889–895

    Article  CAS  PubMed  Google Scholar 

  • DesRosiers EA, Yahia L, Rivard CH (1996) Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res 14:200–208

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, Ishikawa H, Itokazu Y et al (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309:314–317

    Article  CAS  PubMed  Google Scholar 

  • Docheva D, Müller SA, Majewski M et al (2015) Biologics for tendon repair. Adv Drug Deliv Rev 84:222–239

    Article  CAS  PubMed  Google Scholar 

  • Erkanli K, Kayalar N, Erkanli G et al (2005) Melatonin protects against ischemia/reperfusion injury in skeletal muscle. J Pineal Res 39:238–242

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ (2000) Vitamin E, vitamin C, and exercise. Am J Clin Nutr 72:647S–652S

    CAS  PubMed  Google Scholar 

  • Fan H, Liu H, Wong EJ et al (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29:3324–3337

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Liu H, Toh SL et al (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30:4967–4977

    Article  CAS  PubMed  Google Scholar 

  • Farini A, Razini P, Erratico S et al (2009) Cell based therapy for duchenne muscular dystrophy. J Cell Physiol 221:526–534

    Article  CAS  PubMed  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  CAS  PubMed  Google Scholar 

  • Galli R, Pagano SF, Gritti A et al (2000) Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev Neurosci 22:86–95

    Article  CAS  PubMed  Google Scholar 

  • Gaspar D, Spanoudes K, Holladay C et al (2015) Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 84:240–256

    Article  CAS  PubMed  Google Scholar 

  • Grefte S, Kuijpers-Jagtman AM, Torensma R et al (2007) Skeletal muscle development and regeneration. Stem Cells Dev 16:857–868

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Pavlath GK, Lanctot AM et al (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356:435–438

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3:970–977

    Article  CAS  PubMed  Google Scholar 

  • Halici M, Narin F, Turk CY et al (2004) The effect of melatonin on plasma oxidant-antioxidant skeletal muscle reperfusion injury in rats. J Int Med Res 32:500–506

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand KA, Woo SL, Smith DW et al (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med 26:549–554

    CAS  PubMed  Google Scholar 

  • Hildebrand KA, Frank CB, Hart DA (2004) Gene intervention in ligament and tendon: current status, challenges, future directions. Gene Ther 2004:368–378

    Article  Google Scholar 

  • Hill E, Boontheekul T, Mooney DJ (2006a) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Hill E, Boontheekul T, Mooney DJ (2006b) Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci U S A 103:2494–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Du J, Zhang L et al (2010) XIAP reduces muscle proteolysis induced by CKD. J Am Soc Nephrol 21:1174–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Dennis RG, Larkin L et al (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98:706–713

    Article  PubMed  Google Scholar 

  • Husmann I, Soulet L, Gautron J et al (1996) Growth factors in skeletal muscle regeneration. Cytokine Growth Factor Rev 7:249–258

    Article  CAS  PubMed  Google Scholar 

  • Ignatius A, Durselen L (2009) Possibilities and limits in tissue engineering of the anterior cruciate ligament. Orthopade 38:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Irintchev A, Langer M, Zweyer M et al (1997) Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol 500(Pt 3):775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israeli D, Benchaouir R, Ziaei S et al (2004) FGF6 mediated expansion of a resident subset of cells with SP phenotype in the C2C12 myogenic line. J Cell Physiol 201:409–419

    Article  CAS  PubMed  Google Scholar 

  • Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843

    Article  CAS  PubMed  Google Scholar 

  • Järvinen TA, Järvinen TL, Kääriäinen M et al (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764

    Article  PubMed  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T et al (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  CAS  PubMed  Google Scholar 

  • Kamelger FS, Marksteiner R, Margreiter E et al (2004) A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 25:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Karalaki M, Fili S, Philippou A et al (2009) Muscle regeneration: cellular and molecular events. In Vivo 23:779–796

    CAS  PubMed  Google Scholar 

  • Kearns SR, Daly AF, Sheehan K et al (2004) Oral vitamin C reduces the injury to skeletal muscle caused by compartment syndrome. J Bone Joint Surg Br 86:906–911

    Article  CAS  PubMed  Google Scholar 

  • Kew SJ, Gwynne JH, Enea D et al (2011) Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater 7:3237–3247

    Article  CAS  PubMed  Google Scholar 

  • Kim EK, Hong JP (2007) The effect of recombinant human erythropoietin on ischemia-reperfusion injury: an experimental study in a rat TRAM flap model. Plast Reconstr Surg 120:1774–1781

    Article  CAS  PubMed  Google Scholar 

  • Kon M, Kimura F, Akimoto T et al (2007) Effect of Coenzyme Q10 supplementation on exercise-induced muscular injury of rats. Exerc Immunol Rev 13:76–88

    PubMed  Google Scholar 

  • Krampera M, Franchini M, Pizzolo G et al (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5:120–129

    PubMed  PubMed Central  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang L, Liu K et al (2010) Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc Res 80(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • Lomas AJ, Ryan CN, Sorushanova A et al (2015) The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev 84:257–277

    Article  CAS  PubMed  Google Scholar 

  • Maffulli N, Moller HD, Evans CH (2002) Tendon healing: can it be optimised? Br J Sports Med 36:315–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay BR, O’Reilly CE, Phillips SM et al (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol 586:5549–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JR, Kissel JT, Amato AA et al (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333:832–838

    Article  CAS  PubMed  Google Scholar 

  • Menetrey J, Kasemkijwattana C, Day CS et al (1999) Direct-, fibroblast- and myoblast-mediated gene transfer to the anterior cruciate ligament. Tissue Eng 5:435–442

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PO, Pavlath GK (2002) Multiple roles of calcineurin in skeletal muscle growth. Clin Orthop Relat Res (403 Suppl):S197–202

    Google Scholar 

  • Motohashi N, Uezumi A, Yada E et al (2008) Muscle CD31(-) CD45(-) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am J Pathol 173:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourkioti F, Rosenthal N (2008) NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med 86:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muguruma Y, Reyes M, Nakamura Y et al (2003) In vivo and in vitro differentiation of myocytes from human bone marrow-derived multipotent progenitor cells. Exp Hematol 31:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Murchison ND, Price BA, Conner DA et al (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134:2697–2708

    Article  CAS  PubMed  Google Scholar 

  • Naito T, Goto K, Morioka S et al (2009) Administration of granulocyte colony-stimulating factor facilitates the regenerative process of injured mice skeletal muscle via the activation of Akt/GSK3alphabeta signals. Eur J Appl Physiol 105:643–651

    Article  CAS  PubMed  Google Scholar 

  • Oestern HJ, Tscherne H (1983) Physiopathology and classification of soft tissue lesion. Hefte Unfallheilkd 162:1–10

    CAS  PubMed  Google Scholar 

  • Otto A, Collins-Hooper H, Patel K (2009) The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 215:477–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoloni J, De Vos RJ, Hamilton B et al (2011) Platelet-rich plasma treatment for ligament and tendon injuries. Clin J Sport Med 21:37–45

    Article  PubMed  Google Scholar 

  • Peterson JM, Guttridge DC (2008) Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 27:375–387

    Article  CAS  PubMed  Google Scholar 

  • Price FD, Kuroda K, Rudnicki MA (2007) Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta 1772:272–283

    Article  CAS  PubMed  Google Scholar 

  • Qu Z, Balkir L, van Deutekom JC et al (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142:1257–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznick AZ, Witt E, Matsumoto M et al (1992) Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats. Biochem Biophys Res Commun 189:801–806

    Article  CAS  PubMed  Google Scholar 

  • Rodeo SA, Delos D, Weber A et al (2010) What’s new in orthopaedic research. J Bone Joint Surg Am 92:2491–2501

    Article  PubMed  Google Scholar 

  • Rodeo SA, Delos D, Williams RJ et al (2012) The effect of plateletrich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med 40:1234–1241

    Article  PubMed  Google Scholar 

  • Rodriguez AM, Pisani D, Dechesne CA et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201:1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotter R, Menshykova M, Winkler T et al (2008) Erythropoietin improves functional and histological recovery of traumatized skeletal muscle tissue. J Orthop Res 26:1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Marler J, Benvenuto M et al (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–281

    CAS  PubMed  Google Scholar 

  • Sherwood RI, Christensen JL, Weissman IL et al (2004) Determinants of skeletal muscle contributions from circulating cells, bone marrow cells, and hematopoietic stem cells. Stem Cells 22:1292–1304

    Article  PubMed  Google Scholar 

  • Singleton JR, Feldman EL (2001) Insulin-like growth factor-I in muscle metabolism and myotherapies. Neurobiol Dis 8:541–554

    Article  CAS  PubMed  Google Scholar 

  • Stratos I, Rotter R, Eipel C et al (2007) Granulocyte-colony stimulating factor enhances muscle proliferation and strength following skeletal muscle injury in rats. J Appl Physiol 103:1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Stratos I, Madry H, Rotter R et al (2011a) Fibroblast growth factor-2-overexpressing myoblasts encapsulated in alginate spheres increase proliferation, reduce apoptosis, induce adipogenesis, and enhance regeneration following skeletal muscle injury in rats. Tissue Eng Part A 17:2867–2877

    Article  CAS  PubMed  Google Scholar 

  • Stratos I, Li Z, Rotter R, et al (2011b) Inhibition of caspase mediated apoptosis restores muscle function after crush injury in rat skeletal muscle Apoptosis17(3):269–277

    Google Scholar 

  • Stratos I, Richter N, Rotter R et al (2012) Melatonin restores muscle regeneration and enhances muscle function after crush injury in rats. J Pineal Res 52:62–70

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kalka C, Masuda H et al (1999) Ischemia–and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  • Torrente Y, Belicchi M, Sampaolesi M et al (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner KR (2005) Muscle regeneration through myostatin inhibition. Curr Opin Rheumatol 17:720–724

    Article  CAS  PubMed  Google Scholar 

  • Warren JA, Jenkins RR, Packer L et al (1992) Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol 72:2168–2175

    CAS  PubMed  Google Scholar 

  • Wernig A, Zweyer M, Irintchev A (2000) Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol 522(Pt 2):333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SL, Jia F, Zou L et al (2004) Functional tissue engineering for ligament healing: potential of antisense gene therapy. Ann Biomed Eng 32:342–351

    Article  PubMed  Google Scholar 

  • Yimlamai T, Dodd SL, Borst SE et al (2005) Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. J Appl Physiol 99:71–80

    Article  CAS  PubMed  Google Scholar 

  • You T, Goldfarb AH, Bloomer RJ et al (2005) Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: changes in blood and skeletal muscles. Can J Appl Physiol 30:677–689

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Stratos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stratos, I., Mittlmeier, T. (2016). Muscle, Ligament and Tendon Regeneration. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28386-9_11

Download citation

Publish with us

Policies and ethics