Skip to main content

Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases

  • Chapter
  • First Online:
The Benefits of Natural Products for Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology. 2001;57:1515–7.

    Article  CAS  PubMed  Google Scholar 

  • Adams Jr JD, Klaidman LK, Odunze IN, Shen HC, Miller CA. Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol. 1991;14:213–26.

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci. 2004;6(3):259–80.

    PubMed  PubMed Central  Google Scholar 

  • Altamura C, Maes M, Dai J, Meltzer HY. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol. 1995;5:71–5.

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK. Oxidants are a major contributor to aging. Ann N Y Acad Sci. 1992;663:85–96.

    Article  CAS  PubMed  Google Scholar 

  • Amtul Z, Westaway D, Cechetto DF, Rozmahel RF. Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer’s disease. Brain Pathol. 2011;21(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  • Anisman H, Merali Z. Cytokines, stress and depressive illness: brain-immune interactions. Ann Med. 2003;35:2–11.

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Kato H, Fujiwara T, Kogure K, Itoyama Y. Post-ischemic changes of [3H] glycine, binding in the gerbil brain after cerebral ischemia. Eur J Pharmacol. 1995;278:91–6.

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft GW, Eccleston D, Crawford BB. 5-Hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. I. Methods. J Neurochem. 1965;12(6):483–92.

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi K, Lin SS, Manchester JK, Gordon JI. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev. 2000;14:1872–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auyeung TW, Lee JS, Kwok T, Woo J. Physical frailty predicts future cognitive decline—a four-year prospective study in 2737 cognitively normal older adults. J Nutr Health Aging. 2011;15:690–4.

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37:26–32.

    Article  CAS  PubMed  Google Scholar 

  • Barazzoni R, Zanetti M, Vettore M, Tessari P. Relationships between phenylalanine hydroxylation and plasma aromatic amino acid concentrations in humans. Metabolism. 1998;47:669–74.

    Article  CAS  PubMed  Google Scholar 

  • Bavarsad RS, Harrigan MR, Alexandrov AV. N-Acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. 2014;4(2):108–22.

    Article  Google Scholar 

  • Beasley JM, LaCroix AZ, Neuhouser ML, Huang Y, Tinker L, Woods N, Michael Y, Curb JD, Prentice RL. Protein intake and incident frailty in the Women’s Health Initiative observational study. J Am Geriatr Soc. 2010;58:1063–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bémeur C, Paul D, Butterworth RF. Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J Nutr Metab. 2010;4:12–30.

    Google Scholar 

  • Bijarnia S, Wiley V, Carpenter K, Christodoulou J, Ellaway CJ, Wilcken B. Glutaric aciduria type I: outcome following detection by newborn screening. J Inherit Metab Dis. 2008;31:503–7.

    Article  CAS  PubMed  Google Scholar 

  • Bjerkenstedt L, Edman G, Hagenfeldt L, Sedvall G, Wiesel FA. Plasma amino acids in relation to cerebro-spinal fluid monoamine metabolites in schizophrenic patients and health control. Br J Psychiatry. 1985;147:276–82.

    Article  CAS  PubMed  Google Scholar 

  • Blantz RC, Satriano J, Gabbai F, Kelly C. Biological effects of arginine metabolites. Acta Physiol Scand. 2000;168:21–5.

    Article  CAS  PubMed  Google Scholar 

  • Blundell JE, Lawton CL, Halford JCG. Serotonin, eating behavior, and fat intake. Obes Res. 1995;3:471–6.

    Article  Google Scholar 

  • Brau RH, García-Castiñeiras S, Rifkinson N. Cerebro-spinal fluid ascorbic acid levels in neurological disorders. Neurosurgery. 1984;14(2):142–6.

    Article  CAS  PubMed  Google Scholar 

  • Brochu M, Poehlman ET, Ades PA. Obesity, body fat distribution, and coronary artery disease. J Cardiopulm Rehabil. 2000;20:96–108.

    Article  CAS  PubMed  Google Scholar 

  • Buchman AS, Boyle PA, Wilson RS, Tang Y, Bennett DA. Frailty is associated with incident Alzheimer’s disease and cognitive decline in the elderly. Psychosom Med. 2007;69:483–9.

    Article  PubMed  Google Scholar 

  • Butterworth RF, Landreville F, Hamel E, Merkel A, Giguere F, Barbeau A. Effect of asparagine, glutamine and insulin on cerebral amino acid neurotransmitters. Can J Neurol Sci. 1980;7(4):447–50.

    Article  CAS  PubMed  Google Scholar 

  • de Koning TJ, Klomp LW. Serine-deficiency syndromes. Curr Opin Neurol. 2004;17(2):197–204.

    Article  PubMed  Google Scholar 

  • de Koning TJ, Poll-The BT, Jaeken J. Continuing education in neurometabolic disorders—serine deficiency disorders. Neuropediatrics. 1999;30(1):1–4.

    Article  PubMed  Google Scholar 

  • Desai V, Kaler SG. Role of copper in human neurological disorders. Am J Clin Nutr. 2008;88(3):855S–8.

    CAS  PubMed  Google Scholar 

  • Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improves behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res. 1999;57:195–206.

    Article  CAS  PubMed  Google Scholar 

  • Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, et al. The antioxidants α-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem. 2003;84:1173–83.

    Article  CAS  PubMed  Google Scholar 

  • Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol. 2012;33(3):315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernstrom JD. Role of precursor availability in the control of monoamine biosynthesis in brain. Physiol Rev. 1983;63(2):484–546.

    CAS  PubMed  Google Scholar 

  • Fernstrom JD. Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J Nutr Biochem. 1990;1:508–17.

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom JD. Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids. 2013;45:419–30.

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom MH, Fernstrom JD. Protein consumption increase tyrosine concentration and in vivo tyrosine hydroxylation rate in the light-adapted rat retina. Brain Res. 1987;401(2):392–6.

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137:1539S–47.

    CAS  PubMed  Google Scholar 

  • Freeman J, Veggiotti P, Lanzi G, Tagliabue A, Perucca E. The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res. 2006;68:145–80.

    Article  CAS  PubMed  Google Scholar 

  • Friedhoff AJ, Van Winkle E. Isolation and characterization of a compound from the urine of schizophrenics. Nature. 1962;194:897–8.

    Article  CAS  Google Scholar 

  • Friedhoff AJ, Miller JC, Basham DA. A subtracted probe derived from lymphocytes of twins discordant for schizophrenia hybridizes to selective areas of rat brain. Biol Psychiatry. 1995;37:127–31.

    Article  CAS  PubMed  Google Scholar 

  • Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmcol. 2006;17:431–9.

    Article  CAS  Google Scholar 

  • Glick Z, Oku J, Bray GA. Effects of polyphenols on food intake and body weight of lean and obese rats. Nutr Behav. 1982;1:75–8.

    CAS  Google Scholar 

  • Golan D, Halhal B, Glass-Marmor L, Staun-Ram E, Rozenberg O, Lavi I, Dishon S, Barak M, Ish-Shalom S, Miller A. Vitamin D supplementation for patients with multiple sclerosis treated with interferon-beta: a randomized controlled trial assessing the effect on flu-like symptoms and immunomodulatory properties. BMC Neurol. 2013;13:60–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Perez O, Gonzalez-Castañeda RE, Huerta M, Luquin S, Gomez-Pinedo U, Sanchez-Almaraz E, Navarro-Ruiz A, Garcia-Estrada J. Beneficial effects of alpha-lipoic acid plus vitamin E on neurological deficit, reactive gliosis and neuronal remodeling in the penumbra of the ischemic rat brain. Neurosci Lett. 2002;321(1–2):100–4.

    Article  CAS  PubMed  Google Scholar 

  • Growdon JH. Amino acid therapy in neurological disease. In: Amino acid availability and brain function in health and disease, vol. 20; 1988. p. 345–53.

    Google Scholar 

  • Hargreaves KM, Pardridge WM. Neutral amino acid transport at the human blood brain barriers. J Biol Chem. 1988;263:19392–7.

    CAS  PubMed  Google Scholar 

  • Hartman AL, Gasior M, Vining EP, Rogawski MA. The neuropharmacology of the ketogenic diet. Pediatr Neurol. 2007;36:281–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry. 1999;56(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR. Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol. 2001;4(4):385–91.

    Article  CAS  PubMed  Google Scholar 

  • Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH. Effect of protein, fat, carbohydrate and fiber on gastrointestinal peptide release in humans. Regul Pept. 2008;149:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Katri P, Sihvola N, Korpela R. Dietary proteins and food-related reward signals. Food Nutr Res. 2011;55:20–30.

    Google Scholar 

  • Katzung BG, editor. Basic and clinical pharmacology. Norwalk, CT: Appleton & Lange; 1989.

    Google Scholar 

  • Kevin FJ. Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Arch. 2010;460(2):481–94.

    Article  CAS  Google Scholar 

  • Kevin FJ, White C, Cheung KH, Mark DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007;87:593–658.

    Article  CAS  Google Scholar 

  • Leiderman E, Zylberman I, Zukin SR, Cooper TB, Javitt DC. Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: an open-label trial. Biol Psychiatry. 1996;39(3):213–5.

    Article  CAS  PubMed  Google Scholar 

  • Levi F. Cancer prevention: epidemiology and perspectives. Eur J Cancer. 1999;35:1912–24.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman HR. Amino acid and protein requirements: cognitive performance, stress and brain function. In: The committee on Military Nutrition Research, editor. The role of protein and amino acids in sustaining and enhancing performance. Washington, DC: National Academy Press; 1999. p. 289–307.

    Google Scholar 

  • Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.

    Article  CAS  PubMed  Google Scholar 

  • Macleod S, Appleton RE. Neurological disorders presenting mainly in adolescence. Arch Dis Child. 2007;92(2):170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeira C, Lourenco MV, Vargas-Lopes C, Suemoto CK, Brandão CK, Reis T, Leite REP, Laks J, Jacob-Filho W, Pasqualucci CA, Grinberg LT, Ferreira ST, Panizzutti R. d-Serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl Psychiatry. 2015;5:e561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci. 2007;30:317–37.

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997a;77:1081–132.

    CAS  PubMed  Google Scholar 

  • Mattson MP. Neuroprotective signal transduction: relevance to stroke. Neurosci Biobehav Rev. 1997b;21:193–206.

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–72.

    Article  CAS  PubMed  Google Scholar 

  • Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130:1007S–15.

    CAS  PubMed  Google Scholar 

  • Mijnhout GS, Alkhalaf A, Kleefstra N, Bilo HJ. Alpha lipoic acid: a new treatment for neuropathic pain in patients with diabetes? Neth J Med. 2010;68(4):158–62.

    CAS  PubMed  Google Scholar 

  • Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112–30.

    PubMed  PubMed Central  Google Scholar 

  • Morrison LD, Cao XC, Kish SJ. Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer’s disease. J Neurochem. 1998;71:288–94.

    Article  CAS  PubMed  Google Scholar 

  • Orr ML, Watt BK. Amino acid content of foods USDA, Home economics research report No. 4; 1968.

    Google Scholar 

  • Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2(2):219–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal S. Amino Acids from food as medicine: valuable function. In: Memon MA, Essa MM, editors. Food as medicine. New York: Nova Publications; 2013. p. 411–42. Chapter 22.

    Google Scholar 

  • Rajagopal S, Joginapally VR, Srinivasan TSP, Ramanathan V. Beneficial effects of dietary amino acids on brain health. In: Essa MM, Memon MA, editors. Food and brain function. New York: Nova Publications; 2014. p. 221–24.

    Google Scholar 

  • Reveley MA, De Belleroche J, Recordati A, Hirsch SR. Increased CSF amino acids and ventricular enlargement in schizophrenia: a preliminary study. Biol Psychiatry. 1987;22:413–20.

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Rothstein JD. Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol. 2006;175:277–303.

    Article  CAS  Google Scholar 

  • Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. 2008;31:279–86.

    Article  CAS  PubMed  Google Scholar 

  • Shaheen EL, Karen FV. Nutritional therapies for mental disorders. Nutr J. 2008;7:2.

    Article  CAS  Google Scholar 

  • Shinawi M, Gruener N, Lerner A. CSF levels of carnitine in children with meningitis, neurologic disorders, acute gastroenteritis, and seizure. Neurology. 1998;50(6):1869–71.

    Article  CAS  PubMed  Google Scholar 

  • Strauss KA, Lazovic J, Wintermark M, Morton DH. Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain. 2007;130:1905–20.

    Article  PubMed  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68:72–8.

    CAS  PubMed  Google Scholar 

  • van de Rest O, van der Zwaluw NL, de Groot LC. Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids. 2013;45(5):1035–45.

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med. 1997;337:986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox KS, Fitzsimonds RM, Johnson B, Dichter MA. Glycine regulation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol. 1996;76(5):3415–24.

    CAS  PubMed  Google Scholar 

  • Wojciech D, Parsons CG. Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev. 1998;50(4):597–664.

    Google Scholar 

  • Young VR. Amino acids and proteins in relation to the nutrition of elderly people. Age Ageing. 1990;19(4):S10–24.

    Article  CAS  PubMed  Google Scholar 

  • Zeisel S. Perinatal choline influences brain structure and function. Nutr Rev. 2006;64:197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutr Rev. 2009;67(11):615–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Rajagopal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rajagopal, S., Sangam, S.R., Singh, S., Joginapally, V.R. (2016). Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_22

Download citation

Publish with us

Policies and ethics