Skip to main content

Choline and the Brain: An Epigenetic Perspective

  • Chapter
  • First Online:
The Benefits of Natural Products for Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

Choline is an essential nutrient that is required for normal development of the brain. Via its metabolite betaine, it participates in the synthesis of S-adenosylmethionine, a major methyl donor for histone and DNA methylation, two epigenetic mechanisms that regulate gene expression and may alter brain function. Besides its role in methyl group metabolism, choline also has pivotal functions, including the maintenance of structural integrity of membranes and modulation of cholinergic neurotransmission, functions that are often dysregulated in some neurodegenerative disorders. Emerging evidence suggests that environmental factors, including lifestyle or diet, sometimes cause epigenetic changes in the expression of neuronal genes resulting in long-term changes in brain function. Recently, choline has been implicated as an epigenetic modifier of the genome that may alter gene methylation, expression, and cellular function. Abnormal level of choline during fetal or early postnatal life has been shown to alter memory functions during adulthood. It may also contribute to the etiology of stress-related disorders and age-related decline in memory later in life. Conversely, rodent studies suggested that perinatal choline supplementation enhances performance in memory-related tasks during adulthood. In this chapter, we will focus on the impact of choline-gene interaction on brain function in early life and during adulthood. In particular, we will emphasize the potential role of choline as a neuroprotectant that may mitigate some of the adverse effects of neurodegenerative disorders and protect mental health across the lifespan.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ach:

Acetylcholine

AchE:

Acetylcholine esterase

APP:

Amyloid precursor protein

ChAT:

Choline acetyltransferase

Dnmts:

DNA methyltransferases

E:

Embryonic day

HDACs:

Histone deacetylases

HMTs:

Histone methyltransferases

HPA:

Hypothalamic-pituitary-adrenal

IGF:

Insulin-like growth factor

5MTHF:

5-Methyltetrahydrofolate

MTHFR:

Methyltetrahydrofolate reductase

NPC:

Neural progenitor cell

PC:

Phosphatidylcholine

PEM:

Phosphatidylethanolamine

POMC:

Proopiomelanocortin

RE1:

Repressor element-1

SAH:

S-Adenosylhomocysteine

SAM:

S-Adenosylmethionine

THF:

Tetrahydrofolate

References

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.

    Article  CAS  PubMed  Google Scholar 

  • Bekdash RA, Zhang C, Sarkar DK. Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in β-endorphin-producing POMC neurons of the hypothalamus. Alcohol Clin Exp Res. 2013;37(7):1133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blusztajn JK. Choline, a vital amine. Science. 1998;281(5378):794–5.

    Article  CAS  PubMed  Google Scholar 

  • Blusztajn JK, Wurtman RJ. Choline and cholinergic neurons. Science. 1983;221(4611):614–20.

    Article  CAS  PubMed  Google Scholar 

  • Borges AA, Ei-Batah PN, Yamashita LF, Santana ADS, Lopes AC, Freymuller-Haapalainen E, et al. Neuroprotective effect of oral choline administration after global brain ischemia in rats. Nutr Neurosci. 2014;18(6):265–74.

    Article  CAS  PubMed  Google Scholar 

  • Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J. 1998;12(3):349–57.

    CAS  PubMed  Google Scholar 

  • Cermak JM, Blusztajn JK, Meck WH, Williams CL, Fitzgerald CM, Rosene DL, et al. Prenatal availability of choline alters the development of acetylcholinesterase in the rat hippocampus. Dev Neurosci. 1999;21(2):94–104.

    Article  CAS  PubMed  Google Scholar 

  • Cho E, Holmes MD, Hankinson SE, Willett WC. Choline and betaine intake and risk of breast cancer among post-menopausal women. Br J Cancer. 2010;102(3):489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S-W, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr Int Rev J. 2010;1(1):8–16.

    Article  CAS  Google Scholar 

  • Ciappio ED, Mason JB, Crott JW. Maternal one-carbon nutrient intake and cancer risk in offspring. Nutr Rev. 2011;69(10):561–71.

    Article  PubMed  Google Scholar 

  • Cohen BM, Renshaw PF, Stoll AL, Wurtman RJ, Yurgelun-Todd D, Babb SM. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA. 1995;274(11):902–7.

    Article  CAS  PubMed  Google Scholar 

  • Connor CM, Akbarian S. DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics. 2008;3(2):55–8.

    Article  PubMed  Google Scholar 

  • Craciunescu CN, Albright CD, Mar M-H, Song J, Zeisel SH. Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus. J Nutr. 2003;133(11):3614–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Costa K-A, Badea M, Fischer LM, Zeisel SH. Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. Am J Clin Nutr. 2004;80(1):163–70.

    PubMed  Google Scholar 

  • da Costa K-A, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440–4.

    PubMed  PubMed Central  Google Scholar 

  • Da Costa K-A, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 2006;20(9): 1336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauncey MJ. Recent advances in nutrition, genes and brain health. Proc Nutr Soc. 2012;71(4): 581–91.

    Article  CAS  PubMed  Google Scholar 

  • Davison JM, Mellott TJ, Kovacheva VP, Blusztajn JK. Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. J Biol Chem. 2009;284(4):1982–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline [Internet]. [cited 2015 Jan 27], National Academies Press, Washington, DC; 1998. Available from: http://www.nap.edu/catalog/6015/dietary-reference-intakes-for-thiamin-riboflavin-niacin-vitamin-b6-folate-vitamin-b12-pantothenic-acid-biotin-and-choline.

  • Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K. Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen. 2011;26(6):450–6.

    Article  PubMed  Google Scholar 

  • Fischer LM, daCosta KA, Kwock L, Stewart PW, Lu T-S, Stabler SP, et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr. 2007;85(5):1275–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Zeisel SH, Mar M-H, Sadler TW. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002;16(6):619–21.

    CAS  PubMed  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195–204.

    Article  CAS  PubMed  Google Scholar 

  • Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’Anselmi F, Coluccia P, et al. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci. 2008;37(4):731–46.

    Article  CAS  PubMed  Google Scholar 

  • Fuso A, Nicolia V, Ricceri L, Cavallaro RA, Isopi E, Mangia F, et al. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol Aging. 2012;33(7):1482.e1–16.

    Article  CAS  Google Scholar 

  • Geula C, Nagykery N, Nicholas A, Wu C-K. Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol. 2008;67(4): 309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glenn MJ, Gibson EM, Kirby ED, Mellott TJ, Blusztajn JK, Williams CL. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats. Eur J Neurosci. 2007;25(8):2473–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Castañeda RE, Sánchez-González VJ, Flores-Soto M, Vázquez-Camacho G, Macías-Islas MA, Ortiz GG. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer’s disease patients: a pilot study. Genet Mol Biol. 2013;36(1):28–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon N. Nutrition and cognitive function. Brain Dev. 1997;19(3):165–70.

    Article  CAS  PubMed  Google Scholar 

  • Gräff J, Rei D, Guan J-S, Wang W-Y, Seo J, Hennig KM, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 2012;483(7388):222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm SH, Chen L, Patel C, Erickson J, Bonner TI, Weihe E, et al. Upstream sequencing and functional characterization of the human cholinergic gene locus. J Mol Neurosci. 1997;9(3): 223–36.

    Article  CAS  PubMed  Google Scholar 

  • Harold D, Macgregor S, Patterson CE, Hollingworth P, Moore P, Owen MJ, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(2):75–7.

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci. 2004;61(19–20):2571–87.

    Article  CAS  PubMed  Google Scholar 

  • Holliday R. Is there an epigenetic component in long-term memory? J Theor Biol. 1999;200(3):339–41.

    Article  CAS  PubMed  Google Scholar 

  • Holmes GL. Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia. 1997;38(1):12–30.

    Article  CAS  PubMed  Google Scholar 

  • Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, et al. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res. 2002;48(1-2):3–13.

    Article  CAS  PubMed  Google Scholar 

  • Holmes-McNary MQ, Loy R, Mar MH, Albright CD, Zeisel SH. Apoptosis is induced by choline deficiency in fetal brain and in PC12 cells. Brain Res Dev Brain Res. 1997;101(1–2):9–16.

    Article  CAS  PubMed  Google Scholar 

  • Hunter RG. Epigenetic effects of stress and corticosteroids in the brain. Front Cell Neurosci. 2012;6:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikonomovic MD, Klunk WE, Abrahamson EE, Wuu J, Mathis CA, Scheff SW, et al. Precuneus amyloid burden is associated with reduced cholinergic activity in Alzheimer disease. Neurology. 2011;77(1):39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Langley B, Lubin FD, Renthal W, Wood MA, Yasui DH, et al. Epigenetics in the nervous system. J Neurosci. 2008;28(46):11753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Yan J, West AA, Perry CA, Malysheva OV, Devapatla S, et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012;26(8):3563–74.

    Article  CAS  PubMed  Google Scholar 

  • Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–62.

    Article  CAS  PubMed  Google Scholar 

  • Jones JP, Meck WH, Williams CL, Wilson WA, Swartzwelder HS. Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Brain Res Dev Brain Res. 1999;118(1-2):159–67.

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Gu X. Seizures increase acetylcholine and choline concentrations in rat brain regions. Neurochem Res. 1991;16(11):1219–26.

    Article  CAS  PubMed  Google Scholar 

  • Julien C, Tremblay C, Emond V, Lebbadi M, Salem N, Bennett DA, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68(1):48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalhan SC, Marczewski SE. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev Endocr Metab Disord. 2012;13(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  • Klein J. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm (Vienna Austria 1996). 2000;107(8–9):1027–63.

    Article  CAS  Google Scholar 

  • Klein J, Holler T, Cappel E, Köppen A, Löffelholz K. Release of choline from rat brain under hypoxia: contribution from phospholipase A2 but not from phospholipase D. Brain Res. 1993;630(1–2):337–40.

    Article  CAS  PubMed  Google Scholar 

  • Klengel T, Pape J, Binder EB, Mehta D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology. 2014;80:115–32.

    Article  CAS  PubMed  Google Scholar 

  • Kovacheva VP, Mellott TJ, Davison JM, Wagner N, Lopez-Coviella I, Schnitzler AC, et al. Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem. 2007;282(43):31777–88.

    Article  CAS  PubMed  Google Scholar 

  • Kozuka M. Changes in brain energy metabolism, neurotransmitters, and choline during and after incomplete cerebral ischemia in spontaneously hypertensive rats. Neurochem Res. 1995;20(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  • Kretchmer N, Beard JL, Carlson S. The role of nutrition in the development of normal cognition. Am J Clin Nutr. 1996;63(6):997S–1001.

    CAS  PubMed  Google Scholar 

  • Langley EA, Krykbaeva M, Blusztajn JK, Mellott TJ. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T + Itpr3tf/J mouse model of autism. Behav Brain Res. 2015;278:210–20.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman HR. Nutrition, brain function and cognitive performance. Appetite. 2003;40(3):245–54.

    Article  PubMed  Google Scholar 

  • Lin C-H, Huang Y-J, Lin C-J, Lane H-Y, Tsai GE. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer’s disease. Curr Pharm Des. 2014;20(32):5169–79.

    Article  CAS  PubMed  Google Scholar 

  • Lippa CF. Familial Alzheimer’s disease: genetic influences on the disease process (review). Int J Mol Med. 1999;4(5):529–36.

    CAS  PubMed  Google Scholar 

  • Liu Z, Gatt A, Werner SJ, Mikati MA, Holmes GL. Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res. 1994;19(3):191–204.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, van Groen T, Kadish I, Tollefsbol TO. DNA methylation impacts on learning and memory in aging. Neurobiol Aging. 2009;30(4):549–60.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, van Groen T, Kadish I, Li Y, Wang D, James SR, et al. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin Epigenetics. 2011;2(2):349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüth H-J, Apelt J, Ihunwo AO, Arendt T, Schliebs R. Degeneration of beta-amyloid-associated cholinergic structures in transgenic APP SW mice. Brain Res. 2003;977(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging. 2010;31(12):2025–37.

    Article  CAS  PubMed  Google Scholar 

  • McCann JC, Hudes M, Ames BN. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci Biobehav Rev. 2006;30(5):696–712.

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Williams CL. Perinatal choline supplementation increases the threshold for chunking in spatial memory. Neuroreport. 1997a;8(14):3053–9.

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Williams CL. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. Neuroreport. 1997b;8(14):3045–51.

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Williams CL. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport. 1997c;8(13):2831–5.

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Williams CL. Choline supplementation during prenatal development reduces proactive interference in spatial memory. Brain Res Dev Brain Res. 1999;118(1–2):51–9.

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Smith RA, Williams CL. Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol. 1988;21(4):339–53.

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci. 2007;1:7.

    Article  PubMed  Google Scholar 

  • Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci [Internet]. 2008 May 3 [cited 2015 Jan 26];1. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526009/.

  • Mehedint MG, Craciunescu CN, Zeisel SH. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A. 2010a;107(29):12834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J. 2010b;24(1):184–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellott TJ, Follettie MT, Diesl V, Hill AA, Lopez-Coviella I, Blusztajn JK. Prenatal choline availability modulates hippocampal and cerebral cortical gene expression. FASEB J. 2007;21(7): 1311–23.

    Article  CAS  PubMed  Google Scholar 

  • Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6): 1172–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya DA, White AM, Williams CL, Blusztajn JK, Meck WH, Swartzwelder HS. Prenatal choline exposure alters hippocampal responsiveness to cholinergic stimulation in adulthood. Brain Res Dev Brain Res. 2000;123(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Chen M, Gandhy SU, Strawderman M, Levitsky DA, Maclean KN, et al. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci. 2010;124(3):346–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem. 1996;67(3):1328–31.

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat. 2003;26(4):233–42.

    Article  CAS  PubMed  Google Scholar 

  • Myung N-H, Zhu X, Kruman II, Castellani RJ, Petersen RB, Siedlak SL, et al. Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordr). 2008;30(4):209–15.

    Article  Google Scholar 

  • Nag N, Berger-Sweeney JE. Postnatal dietary choline supplementation alters behavior in a mouse model of Rett syndrome. Neurobiol Dis. 2007;26(2):473–80.

    Article  CAS  PubMed  Google Scholar 

  • Nag N, Mellott TJ, Berger-Sweeney JE. Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res. 2008;1237:101–9.

    Article  CAS  PubMed  Google Scholar 

  • Napoli I, Blusztajn JK, Mellott TJ. Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res. 2008;1237:124–35.

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology. 2014;76(Pt B):259–68.

    Article  CAS  PubMed  Google Scholar 

  • Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002;132(8 Suppl):2333S–5.

    CAS  PubMed  Google Scholar 

  • Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20(1):43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A. 1992;89(5):1671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa O, Zhu X, Lee H-G, Raina A, Obrenovich ME, Bowser R, et al. Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe? Acta Neuropathol (Berl). 2003;105(5):524–8.

    CAS  Google Scholar 

  • Ordway JM, Curran T. Methylation matters: modeling a manageable genome. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 2002;13(4):149–62.

    CAS  Google Scholar 

  • Oshida K, Shimizu T, Takase M, Tamura Y, Shimizu T, Yamashiro Y. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr Res. 2003;53(4):589–93.

    Article  CAS  PubMed  Google Scholar 

  • Park LK, Friso S, Choi S-W. Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc. 2012;71(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  • Poly C, Massaro JM, Seshadri S, Wolf PA, Cho E, Krall E, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr. 2011;94(6):1584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  • Ross RG, Hunter SK, McCarthy L, Beuler J, Hutchison AK, Wagner BD, et al. Perinatal choline effects on neonatal pathophysiology related to later Schizophrenia risk. Am J Psychiatry. 2013;170(3):290–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan SH, Williams JK, Thomas JD. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res. 2008;1237:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett. 2003;541(1–3):145–8.

    Article  CAS  PubMed  Google Scholar 

  • Schulz KM, Pearson JN, Gasparrini ME, Brooks KF, Drake-Frazier C, Zajkowski ME, et al. Dietary choline supplementation to dams during pregnancy and lactation mitigates the effects of in utero stress exposure on adult anxiety-related behaviors. Behav Brain Res. 2014;268:104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scremin OU, Jenden DJ. Focal ischemia enhances choline output and decreases acetylcholine output from rat cerebral cortex. Stroke. 1989;20(1):92–5.

    Article  CAS  PubMed  Google Scholar 

  • Sezgin Z, Dincer Y. Alzheimer’s disease and epigenetic diet. Neurochem Int. 2014;78:105–16.

    Article  CAS  PubMed  Google Scholar 

  • Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol. 2004;160(2):102–9.

    Article  PubMed  Google Scholar 

  • Sillivan SE, Vaissière T, Miller CA. Neuroepigenetic regulation of pathogenic memories. Neuroepigenetics. 2015;1:28–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims NR, Bowen DM, Allen SJ, Smith CC, Neary D, Thomas DJ, et al. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem. 1983;40(2):503–9.

    Article  CAS  PubMed  Google Scholar 

  • Söderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids. 1991;26(6):421–5.

    Article  PubMed  Google Scholar 

  • Söderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G. Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. J Neurochem. 1992;59(5):1646–53.

    Article  PubMed  Google Scholar 

  • Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology. 2013;38(1):124–37.

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L, Gottfries CG. Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem. 1994;62(3):1039–47.

    Article  CAS  PubMed  Google Scholar 

  • Teather LA, Wurtman RJ. Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats. Learn Mem Cold Spring Harb N Y. 2005;12(1):39–43.

    Article  Google Scholar 

  • Thomas JD, La Fiette MH, Quinn VR, Riley EP. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol. 2000;22(5):703–11.

    Article  CAS  PubMed  Google Scholar 

  • Thomas JD, Biane JS, O’Bryan KA, O’Neill TM, Dominguez HD. Choline supplementation following third-trimester-equivalent alcohol exposure attenuates behavioral alterations in rats. Behav Neurosci. 2007;121(1):120–30.

    Article  CAS  PubMed  Google Scholar 

  • Thomas JD, Abou EJ, Dominguez HD. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol Teratol. 2009;31(5):303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JD, Idrus NM, Monk BR, Dominguez HD. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats. Birth Defects Res A Clin Mol Teratol. 2010;88(10):827–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res. 1999;70(2):288–92.

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa H, Matsuzawa D, Ishii D, Matsuda S, Kawai K, Mashimo Y, et al. Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus. Genes Brain Behav. 2015;14(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  • Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis. 2011;34(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  • Van den Veyver IB. Genetic effects of methylation diets. Annu Rev Nutr. 2002;22:255–82.

    Article  CAS  PubMed  Google Scholar 

  • Van den Veyver IB, Zoghbi HY. Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome. Brain Dev. 2001;23 Suppl 1:S147–51.

    Article  PubMed  Google Scholar 

  • Vance DE, Ridgway ND. The methylation of phosphatidylethanolamine. Prog Lipid Res. 1988;27(1):61–79.

    Article  CAS  PubMed  Google Scholar 

  • Ward BC, Kolodny NH, Nag N, Berger-Sweeney JE. Neurochemical changes in a mouse model of Rett syndrome: changes over time and in response to perinatal choline nutritional supplementation. J Neurochem. 2009;108(2):361–71.

    Article  CAS  PubMed  Google Scholar 

  • West RL, Lee JM, Maroun LE. Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci. 1995;6(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  • Wilcock GK, Esiri MM, Bowen DM, Smith CC. Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci. 1982;57(2-3):407–17.

    Article  CAS  PubMed  Google Scholar 

  • Williams CL, Meck WH, Heyer DD, Loy R. Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res. 1998;794(2):225–38.

    Article  CAS  PubMed  Google Scholar 

  • Wong H-KA, Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, et al. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet. 2013;22(15):3077–92.

    Article  CAS  PubMed  Google Scholar 

  • Wong-Goodrich SJE, Glenn MJ, Mellott TJ, Blusztajn JK, Meck WH, Williams CL. Spatial memory and hippocampal plasticity are differentially sensitive to the availability of choline in adulthood as a function of choline supply in utero. Brain Res. 2008a;1237:153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong-Goodrich SJE, Mellott TJ, Glenn MJ, Blusztajn JK, Williams CL. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus. Neurobiol Dis. 2008b;30(2):255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong-Goodrich SJE, Glenn MJ, Mellott TJ, Liu YB, Blusztajn JK, Williams CL. Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood. Hippocampus. 2011;21(6):584–608.

    Article  CAS  PubMed  Google Scholar 

  • Wurtman RJ. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci. 1992;15(4):117–22.

    Article  CAS  PubMed  Google Scholar 

  • Wurtman RJ, Blusztajn JK, Maire JC. “Autocannibalism” of choline-containing membrane phospholipids in the pathogenesis of Alzheimer’s disease—a hypothesis. Neurochem Int. 1985;7(2):369–72.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Gammon MD, Zeisel SH, Lee YL, Wetmur JG, Teitelbaum SL, et al. Choline metabolism and risk of breast cancer in a population-based study. FASEB J. 2008;22(6):2045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu Z, Cermak JM, Tandon P, Sarkisian MR, Stafstrom CE, et al. Protective effects of prenatal choline supplementation on seizure-induced memory impairment. J Neurosci. 2000;20(22):RC109.

    CAS  PubMed  Google Scholar 

  • Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med. 2009;46(9):1241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH. Choline: essential for brain development and function. Adv Pediatr. 1997;44:263–95.

    CAS  PubMed  Google Scholar 

  • Zeisel SH. Choline: needed for normal development of memory. J Am Coll Nutr. 2000;19(5 Suppl):528S–31.

    Article  CAS  PubMed  Google Scholar 

  • Zeisel SH. Nutritional importance of choline for brain development. J Am Coll Nutr. 2004;23(6 Suppl):621S–6.

    Article  CAS  PubMed  Google Scholar 

  • Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH. Nutritional genomics: defining the dietary requirement and effects of choline. J Nutr. 2011;141(3):531–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH. A brief history of choline. Ann Nutr Metab. 2012;61(3):254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. Clin Chem Lab Med. 2013;51(3):467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH, da Costa K-A. Choline: an essential nutrient for public health. Nutr Rev. 2009;67(11):615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev. 2006;64(4):197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH, Costa KAD, Franklin PD, Alexander EA, Lamont JT, Sheard NF, et al. Choline, an essential nutrient for humans. FASEB J. 1991;5(7):2093–8.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001;15(18):2343–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

The author declares that he/she has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rola Aldana Bekdash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bekdash, R.A. (2016). Choline and the Brain: An Epigenetic Perspective. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_21

Download citation

Publish with us

Policies and ethics