Skip to main content

Cannabinoids: Glutamatergic Transmission and Kynurenines

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD+. Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington’s disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams ST, McDonald KL, Zinger A, Bustamante S, Lim CK, Sundaram G, Braidy N, Brew JB, Guillemin GJ. Involvement of the kynurenine pathway in human glioma pathophysiology. PLoS One. 2014;9:e112945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Kury LT, Voitychuk OI, Yang KH, Thayyullathil FT, Doroshenko P, Ramez AM, Shuba YM, Galadari S, Howarth FC, Oz M. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. Br J Pharmacol. 2014;171:3485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alptekin A, Galadari S, Shuba Y, Petroianu G, Oz M. The effects of anandamide transport inhibitor AM404 on voltage-dependent calcium channels. Eur J Pharmacol. 2010;634:10–5.

    Article  CAS  PubMed  Google Scholar 

  • Andrade C, Singh NM, Thyagarajan S, Nagaraja N, Sanjay Kumar Rao N, Suresh Chandra J. Possible glutamatergic and lipid signalling mechanisms in ECT-induced retrograde amnesia: experimental evidence for involvement of COX-2, and review of literature. J Psychiatr Res. 2008;42:837–50.

    Article  PubMed  Google Scholar 

  • Ball HJJ, Bakmiwewa SM, Hunt NH, Yuasa HJ. Tryptophan-catabolizing enzymes- party of three. Front Immunol. 2014;5:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barana A, Amoros I, Caballero R, Gomez R, Osuna L, Lillo MP, et al. Endocannabinoids and cannabinoid analogues block cardiac hKv1.5 channels in a cannabinoid receptor-independent manner. Cardiovasc Res. 2010;85:56–67.

    Article  CAS  PubMed  Google Scholar 

  • Bender DA, McCreanor GM. The preferred route of kynurenine metabolism in the rat. Biochim Biophys Acta. 1982;717:56–60.

    Article  CAS  PubMed  Google Scholar 

  • Benzinou M, Chèvre JC, Ward KJ, Lecoeur C, Dina C, Lobbens S, Durand E, Delplanque J, Horber FF, Heude B, Balkau B, Borch-Johnsen K, Jørgensen T, Hansen T, Pedersen O, Meyre D, Froguel P. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations. Hum Mol Genet. 2008;17:1916–21.

    Article  CAS  PubMed  Google Scholar 

  • Braidy NG, Brew BJ, Adams S, Jayasena T, Guillemin GJ. Effects of kynurenine paths metabolites on intracellular NAD+ synthesis and cell death in human primary astrocytes and neurons. Int J Tryptophan Res. 2009;2:61–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JA, Horváth S, Garbett KA, Schmidt MJ, Everheart M, Gellért L, Ebert P, Mirnics K. The role of cannabinoid 1 receptor expressing interneurons in behavior. Neurobiol Dis. 2014;63:210–21.

    Article  CAS  PubMed  Google Scholar 

  • Butt C, Alptekin A, Shippenberg T, Oz M. Endogenous cannabinoid anandamide inhibits nicotinic acetylcholine receptor function in mouse thalamic synaptosomes. J Neurochem. 2008;105:1235–43. doi:10.1111/j.1471-4159.2008.05225.x.

    Article  CAS  PubMed  Google Scholar 

  • Casteels C, Martinez E, Bormans G, Camon L, de Vera N, Baekelandt V, Planas AM, Van Laere K. Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism. Eur J Nucl Med Mol Imaging. 2010;37:2354–63.

    Article  CAS  PubMed  Google Scholar 

  • Cesario AR, Rutella S. The interplay between indoleamine 2.3-dioxygenase 1 (IDO1) and cyclooxygenase-2 in chronic inflammation and cancer. Curr Med Chem. 2011;18:15.

    Article  Google Scholar 

  • Cherian KG, Johnson DE, Young D, Kozak R, Sarter M. A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology. 2014;82:41–8.

    Article  CAS  PubMed Central  Google Scholar 

  • Chiarlone A, Bellocchio L, Blázquez C, Resela E, Soria-Gómez E, Cannich A, Ferrero JJ, Sagredo O, Benito C, Romero J, Sánchez-Prieto J, Lutz B, Fernández-Ruiz J, Galve-Roperh I, Guzmán M. A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci. 2014;111:8257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarugi ADS, Paccagnini A, Donnini S, Filippi S, Moroni F. Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-y activated macrophages. J Leukoc Biol. 2000;68:260–6.

    CAS  PubMed  Google Scholar 

  • Costantino G. Inhibitors of quinolinic acid synthesis: new weapons in the study of neuroinflammatory diseases. Future Med Chem. 2014;6:841–3.

    Article  CAS  PubMed  Google Scholar 

  • Coutinho LGC, Bellac CL, Fontes FL, Souza FR, Grandgirard D, Leib SL, Agnez-Lima LF. The kynurenine pathway is involved in bacterial meningitis. J Neuroinflammation. 2014;11:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo I, Gómez de Heras R, Rodríguez de Fonseca F, Navarro M. Pretreatment with subeffective doses of Rimonabant attenuates orexigenic actions of orexin A-hypocretin 1. Neuropharmacology. 2008;54:219–25.

    Article  CAS  PubMed  Google Scholar 

  • De March Z, Zuccato C, Giampa C, Patassini S, Bari M, Gasperi V, De Ceballos ML, Bernardi G, Maccarrone M, Cattaneo E, Fusco FR. Cortical expression of brain derived neurotrophic factor and type-1 cannabinoid receptor after striatal excitotoxic lesions. Neuroscience. 2008;152:734–40.

    Article  CAS  PubMed  Google Scholar 

  • Edwards JG. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. Prog Drug Res. 2014;68:77–104.

    CAS  PubMed  Google Scholar 

  • Eggan SM, Hashimoto T, Lewis DA. Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Arch Gen Psychiatry. 2008;65:772–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggan SM, Lazarus MS, Stoyak SR, Volk DW, Glausier JR, Huang ZJ, Lewis DA. Cortical glutamic acid decarboxylase 67 deficiency results in lower cannabinoid 1 receptor messenger RNA expression: implications for schizophrenia. Biol Psychiatry. 2012;71:114–9.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers CL, Slutske WS, Lind PA, Wilhelmsen KC. Association between single nucleotide polymorphisms in the cannabinoid receptor gene (CNR1) and impulsivity in southwest California Indians. Twin Res Hum Genet. 2007;10:805–11.

    Article  PubMed  Google Scholar 

  • El Manira A, Kyriakatos A, Nanou E, Mahmood R. Endocannabinoid signaling in the spinal locomotor circuitry. Brain Res Rev. 2008;57:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Farkas I, Kalló I, Deli L, Vida B, Hrabovszky E, Fekete C, Moenter SM, Watanabe M, Liposits Z. Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology. 2010;151:5818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Jiang L, Berg RL, Antonik M, MacKinney E, Gunnell-Santoro J, McCarty CA, Wilke RA. A common CNR1 (cannabinoid receptor 1) haplotype attenuates the decrease in HDL cholesterol that typically accompanies weight gain. PLoS One. 2010;5:e15779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SG, Teixeira FM, Garção P, Agostinho P, Ledent C, Cortes L, Mackie K, Köfalvi A. Presynaptic CB(1) cannabinoid receptors control frontocortical serotonin and glutamate release--species differences. Neurochem Int. 2012;61:219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fezza F, Marrone MC, Avvisati R, Di Tommaso M, Lanuti M, Rapino C, Mercuri NB, Maccarrone M, Marinelli S. Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting. Mol Cell Neurosci. 2014;62:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Foster ACW, Schwarcz R. Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro. J Neurochem. 1986;47:23–30.

    Article  CAS  PubMed  Google Scholar 

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232:54–61.

    Article  CAS  PubMed  Google Scholar 

  • García-Morales V, Montero F, Moreno-López B. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo. Neuropharmacology. 2015;92:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Irie K, Sano K, Watanabe T, Higuchi S, Enoki M, Nakano T, Harada K, Ishikane S, Ikeda T, Fujioka M, Orito K, Iwasaki K, Mishima K, Fujiwara M. Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism. Biol Pharm Bull. 2009;32:1538–44.

    Article  CAS  PubMed  Google Scholar 

  • Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Ye JH, et al. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol. 2006;69:991–7.

    CAS  PubMed  Google Scholar 

  • Hermann D, Schneider M. Potential protective effects of cannabidiol on neuroanatomical alterations in cannabis users and psychosis: a critical review. Curr Pharm Des. 2012;18:4897–905.

    Article  CAS  PubMed  Google Scholar 

  • Hirvonen J, Zanotti-Fregonara P, Umhau JC, George DT, Rallis-Frutos D, Lyoo CH, Li CT, Hines CS, Sun H, Terry GE, Morse C, Zoghbi SS, Pike VW, Innis RB, Heilig M. Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol Psychiatry. 2013;18:916–21.

    Article  CAS  PubMed  Google Scholar 

  • Ho YC, Lee HJ, Tung LW, Liao YY, Fu SY, Teng SF, Liao HT, Mackie K, Chiou LC. Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci. 2011;31:14600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou DY, Muller AJ, Sharma MD, Du Hadaway J, Baner T, Johnson M, Mellor AL, Prendergast GC, Munn DH. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 2007;67:792–801.

    Article  CAS  PubMed  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.

    Article  CAS  PubMed  Google Scholar 

  • Hudson BD, Hébert TE, Kelly ME. Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol. 2010;77:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Jenny M, Santer E, Pirich E, Schennach H, Fuchs D. Δ9-Tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2009;207:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Jones SPG, Brew BJ. The kynurenine pathway in stem cell biology. Int J Tryptophan Res. 2013;6:57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justinova Z, Mascia P, Wu H-Q, Secci ME, Redhi GH, Panlilio LV, Scherma M, Barnes C, Parashos A, Zara T, Fratta W, Solinas M, Pistis M, Bergman J, Kangas BD, Ferré S, Tanda G, Schwarcz R, Goldberg SR. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat Neurosci. 2013;16:1652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009;89:309–80. doi:10.1152/physrev.00019.2008.

    Article  CAS  PubMed  Google Scholar 

  • Kegel MEB, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Enberg G, Schuppe-Koistinen I, Erhardt S. Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res. 2014;7:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettunen P, Kyriakatos A, Hallén K, El Manira A. Neuromodulation via conditional release of endocannabinoids in the spinal locomotor network. Neuron. 2005;45:95–104.

    Article  CAS  PubMed  Google Scholar 

  • Khalil OSP, Forrest CM, Vicenten MC, Darlington LG, Stone TW. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur J Neurosci. 2014;39:1558–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan SS, Lee FJ. Delineation of domains within the cannabinoid CB1 and dopamine D2 receptors that mediate the formation of the heterodimer complex. J Mol Neurosci. 2014;53:10–21.

    Article  CAS  PubMed  Google Scholar 

  • Lee HJJ, Lee TH, Jung ID, Lee JS, Lee CM, Kim J, Joo H, Lee JD, Park YM. Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochem Pharmacol. 2007;73:1412–21.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, Palmiter RD, Krystal G, Rai R, Mahadevan A, Razdan RK, Kunos G. Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology. 2008;54:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N. Glycine receptors in CNS neurons as a target from nonretrograde action of cannabinoids. J Neurosci. 2005;25:7499–506.

    Article  CAS  PubMed  Google Scholar 

  • Lozovaya N, Mukhtarov M, Tsintsadze T, Ledent C, Burnashev N, Bregestovski P. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG. Front Mol Neurosci. 2011;4:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugo-Huitrón R, Pineda B, Pedraza-Chaverrí J, Ríos C, Pérez De La Cruz V. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013;2013:104024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccarrone M, Rossi S, Bari M, De Chiara V, Fezza F, Musella A, Gasperi V, Prosperetti C, Bernardi G, Finazzi-Agrò A, Cravatt BF, Centonze D. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci. 2008;11:152–9.

    Article  CAS  PubMed  Google Scholar 

  • Martin BR, Mechoulam R, Razdan RK. Discovery and characterization of endogenous cannabinoids. Life Sci. 1999;65:573–95.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Pinilla E, Reyes-Resina I, Oñatibia-Astibia A, Zamarbide M, Ricobaraza A, Navarro G, Moreno E, Dopeso-Reyes IG, Sierra S, Rico AJ, Roda E, Lanciego JL, Franco R. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44–52.

    Article  CAS  PubMed  Google Scholar 

  • Martins D, Tavares I, Morgado C. “Hotheaded”: the role OF TRPV1 in brain functions. Neuropharmacology. 2014;85:151–7.

    Article  CAS  PubMed  Google Scholar 

  • Mecha M, Feliú A, Carrillo-Salinas FJ, Rueda-Zubiaurre A, Ortega-Gutiérrez S, de Sola RG, Guaza C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun. 2015;49:233–45. doi:10.1016/j.bbi.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  • Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev. 2011;63:461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitjans M, Serretti A, Fabbri C, Gastó C, Catalán R, Fañanás L, Arias B. Screening genetic variability at the CNR1 gene in both major depression etiology and clinical response to citalopram treatment. Psychopharmacology (Berl). 2013;227:509–19.

    Article  CAS  Google Scholar 

  • Monory K, Polack M, Remus A, Lutz B, Korte M. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J Neurosci. 2015;35:3842–50.

    Article  CAS  PubMed  Google Scholar 

  • Monteleone P, Bifulco M, Maina G, Tortorella A, Gazzerro P, Proto MC, Di Filippo C, Monteleone F, Canestrelli B, Buonerba G, Bogetto F, Maj M. Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol Res. 2010;61:400–4.

    Article  CAS  PubMed  Google Scholar 

  • Morena M, Patel S, Bains JS, Hill MN. Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology. 2015;41:80–102. doi:10.1038/npp.2015.166.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Galindo EG, Barrio-Echavarría GF, Vásquez JC, Decher N, Sachse FB, Tristani-Firouzi M, Sánchez-Chapula JA, Navarro-Polanco RA. Molecular basis for a high-potency open-channel block of Kv1.5 channel by the endocannabinoid anandamide. Mol Pharmacol. 2010;77:751–8.

    Article  CAS  PubMed  Google Scholar 

  • Morera-Herreras T, Ruiz-Ortega JA, Gómez-Urquijo S, Ugedo L. Involvement of subthalamic nucleus in the stimulatory effect of Delta(9)-tetrahydrocannabinol on dopaminergic neurons. Neuroscience. 2008;151:817–23.

    Article  CAS  PubMed  Google Scholar 

  • Morera-Herreras T, Ruiz-Ortega JA, Ugedo L. Two opposite effects of Delta(9)-tetrahydrocannabinol on subthalamic nucleus neuron activity: involvement of GABAergic and glutamatergic neurotransmission. Synapse. 2010;64:20–9.

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci. 1999;19:2987–95.

    CAS  PubMed  Google Scholar 

  • Navia-Paldanius D, Aaltonen N, Lehtonen M, Savinainen JR, Taschler U, Radner FP, Zimmermann R, Laitinen JT. Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. Eur J Pharm Sci. 2015;77:180–8. doi:10.1016/j.ejps.2015.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson RA, Liao C, Zheng J, David LS, Coyne L, Errington AC, Singh G, Lees G. Sodium channel inhibition by anandamide and synthetic cannabimimetics in brain. Brain Res. 2003;978:194–204.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto Y, Tsuboi K, Ueda N. Enzymatic formation of anandamide. Vitam Horm. 2009;81:1–24.

    Article  CAS  PubMed  Google Scholar 

  • Okura D, Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Sata T. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. Anesth Analg. 2014;118:554–62.

    Article  CAS  PubMed  Google Scholar 

  • Onaivi ES. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. Int Rev Neurobiol. 2009;88:335–69. doi:10.1016/S0074-7742(09)88012.

    Article  CAS  PubMed  Google Scholar 

  • Onaivi ES, Ishiguro H, Gu S, Liu QR. CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol. 2012;26:92–103.

    Article  CAS  PubMed  Google Scholar 

  • Onwuameze OE, Nam KW, Epping EA, Wassink TH, Ziebell S, Andreasen NC, Ho BC. MAPK14 and CNR1 gene variant interactions: effects on brain volume deficits in schizophrenia patients with marijuana misuse. Psychol Med. 2013;43:619–31.

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Tchugunova YB, Dunn SM. Endogenous cannabinoid anandamide directly inhibits voltage-dependent Ca(2+) fluxes in rabbit T-tubule membranes. Eur J Pharmacol. 2000;404:13–20.

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Zhang L, Morales M. Endogenous cannabinoid, anandamide, acts as a noncompetitive inhibitor on 5-HT3 receptor-mediated responses in Xenopus oocytes. Synapse. 2002;46:150–6.

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Ravindran A, Diaz-Ruiz O, Zhang L, Morales M. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. J Pharmacol Exp Ther. 2003;306:1003–10. Epub 2003 May 23.

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Alptekin A, Tchugunova Y, Dinc M. Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2 + fluxes in rabbit T-tubule membranes. Arch Biochem Biophys. 2005;434:344–51.

    Article  CAS  PubMed  Google Scholar 

  • Oz M. Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther. 2006;111:114–44.

    Article  CAS  PubMed  Google Scholar 

  • Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C, Romero J, Azcoitia I, Fernández-Ruiz J, Guzmán M, Galve-Roperh I. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132:3152–64.

    Article  PubMed  Google Scholar 

  • Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res. 2012;5:1–8.

    PubMed  PubMed Central  Google Scholar 

  • Perrey DA, Gilmour BP, Thomas BF, Zhang Y. Toward the development of bivalent ligand probes of cannabinoid CB1 and orexin OX1 receptor heterodimers. ACS Med Chem Lett. 2014;5:634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintor A, Tebano MT, Martire A, Grieco R, Galluzzo M, Scattoni ML, Pezzola A, Coccurello R, Felici F, Cuomo V, Piomelli D, Calamandrei G, Popoli P. The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology. 2006;51:1004–12.

    Article  CAS  PubMed  Google Scholar 

  • Poling JS, Rogawski MA, Salem Jr N, Vicini S. Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. Neuropharmacology. 1996;35:983–91.

    Article  CAS  PubMed  Google Scholar 

  • Prendergast GC, Metz R, Muller AJ, Merlo LM, Mndik-Nayak L. IDO2 in immunomodulation and autoimmune disease. Front Immunol. 2014;5:585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel-López E, Colín-González AL, Paz-Loyola AL, Pinzón E, Torres I, Serratos IN, Castellanos P, Wajner M, Souza DO, Santamaria A. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience. 2015;285:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Ocampo JL, Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda P, Pedraza-Chaverri J, Ríos C, Pérez-De La Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. Oxid Med Cell Longev. 2014;2014:646909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson PJ. Therapeutic potential of cannabinoid medicines. Drug Test Anal. 2014;6:24–30.

    Article  CAS  PubMed  Google Scholar 

  • Romigi A, Bari M, Placidi F, Marciani MG, Malaponti M, Torelli F, Izzi F, Prosperetti C, Zannino S, Corte F, Chiaramonte C, Maccarrone M. Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia. 2010;51:768–72.

    Article  CAS  PubMed  Google Scholar 

  • Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagredo O, Pazos MR, Valdeolivas S, Fernández-Ruiz J. Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Pat CNS Drug Discov. 2012;7:41–8.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Vicente-Sánchez A, Garzón J. Cannabinoid receptors couple to NMDA receptors to reduce the production of NO and the mobilization of zinc induced by glutamate. Antioxid Redox Signal. 2013;19:1766–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Front Pharmacol. 2014;4:1–10.

    Article  CAS  Google Scholar 

  • Schacht JP, Hutchison KE, Filbey FM. Associations between cannabinoid receptor-1 (CNR1) variation and hippocampus and amygdala volumes in heavy cannabis users. Neuropsychopharmacology. 2012;37:2368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarcz RB, Muchowski PJ, Wu H-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13:465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solinas M, Justinova Z, Goldberg SR, Tanda G. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J Neurochem. 2006;98:408–19.

    Article  CAS  PubMed  Google Scholar 

  • Spivak CE, Lupica CR, Oz M. The endocannabinoid anandamide inhibits the function of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol. 2007;72:1024–32.

    Article  CAS  PubMed  Google Scholar 

  • Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997;388:773–8.

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Pinilla P, Roiz-Santiañez R, Ortiz-García de la Foz V, Guest PC, Ayesa-Arriola R, Córdova-Palomera A, Tordesillas-Gutierrez D, Crespo-Facorro B. Brain structural and clinical changes after first episode psychosis: focus on cannabinoid receptor 1 polymorphisms. Psychiatry Res. 2015;233:112–9. doi:10.1016/j.pscychresns.2015.05.005.

    Article  PubMed  Google Scholar 

  • Sundaram GB, Jones SP, Adams S, Lim CK, Guilemin GJ. Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies. J Neuroinflammation. 2014;11:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari AK, Zai CC, Likhodi O, Voineskos AN, Meltzer HY, Lieberman JA, Potkin SG, Remington G, Müller DJ, Kennedy JL. Association study of cannabinoid receptor 1 (CNR1) gene in tardive dyskinesia. Pharmacogenomics J. 2012;12:260–6.

    Article  CAS  PubMed  Google Scholar 

  • Torok NT, Szolnoki Z, Somogyvari F, Klivenyi P, Vecsei L. The genetic link between Parkinson’s disease and the kynurenine pathway is still missing. Parkinsons Dis. 2015;2015:474135.

    PubMed  PubMed Central  Google Scholar 

  • Ujike H, Takaki M, Nakata K, Tanaka Y, Takeda T, Kodama M, et al. CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol Psychiatry. 2002;7:515–8.

    Article  CAS  PubMed  Google Scholar 

  • van-Baren NV. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol. 2015;6:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecsei LS, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12:64–82.

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Sánchez A, Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol Brain. 2013;6:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CS, Chen H, Sun H, Zhu J, Jew CP, Wager-Miller J, Straiker A, Spencer C, Bradshaw H, Mackie K, Lu HC. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination. PLoS One. 2013;8:e60314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan EBF, Lim CK, Heng B, Sundaram G, Tan M, Rosenfeld JV, Walker DW, Guillemin GJ, Morganti-Kossmann MC. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation. 2015;12:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Abood ME. GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors. Life Sci. 2013;92:453–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Santamaría .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colín-González, A.L., Aguilera, G., Santamaría, A. (2016). Cannabinoids: Glutamatergic Transmission and Kynurenines. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_10

Download citation

Publish with us

Policies and ethics