Skip to main content

Evaluating Confidence Intervals for ELM Predictions

  • Conference paper
  • First Online:
Proceedings of ELM-2015 Volume 2

Abstract

This paper proposes a way of providing more useful and interpretable results for ELM models by adding confidence intervals to predictions. Unlike a usual statistical approach with Mean Squared Error (MSE) that evaluates an average performance of an ELM model over the whole dataset, the proposed method computed particular confidence intervals for each data sample. A confidence for each particular sample makes ELM predictions more intuitive to interpret, and an ELM model more applicable in practice under task-specific requirements. The method shows good results on both toy and a real skin segmentation datasets. On a toy dataset, the predicted confidence intervals accurately represent a variable magnitude noise. On a real dataset, classification with a confidence interval improves the precision at the cost of recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990, IEEE (2004)

    Google Scholar 

  2. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  3. Huang, G.B.: What are Extreme learning machines? Filling the gap between Frank Rosenblatts Dream and John von Neumanns Puzzle. Cogn. Comput. 7(3), 263–278 (2015)

    Article  Google Scholar 

  4. van Heeswijk, M., Miche, Y., Oja, E., Lendasse, A.: Gpu-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 74(16), 2430–2437 (2011)

    Article  Google Scholar 

  5. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

    Article  Google Scholar 

  6. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–2421 (2011)

    Article  Google Scholar 

  7. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  8. Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013)

    Article  Google Scholar 

  9. Miche, Y., Bas, P., Jutten, C., Simula, O., Lendasse, A.: A methodology for building regression models using extreme learning machine: OP-ELM. In: ESANN 2008 Proceedings

    Google Scholar 

  10. Cambria, E., et al.: Extreme learning machines. IEEE Intell. Syst. 28(6), 30–59 (2013)

    Article  Google Scholar 

  11. Akusok, A., Miche, Y., Karhunen, J., Björk, K.M., Nian, R., Lendasse, A.: Arbitrary category classification of websites based on image content. IEEE Comput. Intell. Mag. 10(2), 30–41 (2015)

    Article  Google Scholar 

  12. Shang, Z., He, J.: Confidence-weighted extreme learning machine for regression problems. Neurocomputing 148, 544–550 (2015)

    Article  Google Scholar 

  13. Lendasse, A., Ji, Y., Reyhani, N., Verleysen, M.: LS-SVM Hyperparameter Selection with a Nonparametric Noise Estimator. In: Artificial Neural Networks: Formal Models and Their Applications ICANN 2005. Volume 3697 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 625–630 (2005)

    Google Scholar 

  14. Pouzols, F.M., Lendasse, A., Barros, A.B.: Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation. Fuzzy Sets Sys. 161(4), 471–497 (2010). Theme: Forecasting, Classification, and Learning

    Google Scholar 

  15. Guillén, A., Sovilj, D., Lendasse, A., Mateo, F., Rojas, I.: Minimising the delta test for variable selection in regression problems. Int. J. High Perform. Syst. Archit. 1(4), 269–281 (2008)

    Article  Google Scholar 

  16. Bishop, C.M.: Pattern Recognition and Machine Learning. Volume 4 of Information science and statistics. Springer (2006)

    Google Scholar 

  17. Akusok, A., Björk, K.M., Miché, Y., Lendasse, A.: High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 3, 1011–1025 (2015)

    Article  Google Scholar 

  18. Phung, S.L., Bouzerdoum, A., Chai D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)

    Google Scholar 

  19. Swaney, C., Akusok, A., Björk, K.M., Miche, Y., Lendasse, A.: Efficient skin segmentation via neural networks: HP-ELM and BD-SOM. 53, 400–409 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Akusok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Akusok, A., Miche, Y., Björk, KM., Nian, R., Lauren, P., Lendasse, A. (2016). Evaluating Confidence Intervals for ELM Predictions. In: Cao, J., Mao, K., Wu, J., Lendasse, A. (eds) Proceedings of ELM-2015 Volume 2. Proceedings in Adaptation, Learning and Optimization, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-28373-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28373-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28372-2

  • Online ISBN: 978-3-319-28373-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics