Skip to main content

Control of Bacterial Growth Through RNA Degradation

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth

Abstract

The amount of the different RNAs present in a bacterial cell must be perfectly coordinated in terms of rate of synthesis and degradation to allow balanced growth adjusted to the environmental conditions such as temperature, osmolarity, nutrients, pH, and the like. Any given compound causing imbalanced growth, causing acceleration of the degradation of mRNAs before they can be translated, or lack of RNA processing to properly form the tRNAs or even the ribosomes, may be at least in principle be looked upon as potential antibacterial compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson CS, Freed EO (2010) Novel approaches to inhibiting HIV-1 replication. Antiviral Res 85:119–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman S (2011) Ribonuclease P. Philos Trans R Soc Lond B Biol Sci 366(1580):2936–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amblar M, Barbas A, Gomez-Puertas P, Arraiano CM (2007) The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization. RNA 13:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando T, Tanaka T, Kikuchi Y (2003) Substrate shape specificity of E. coli RNase P ribozyme is dependent on the concentration of magnesium ion. J Biochem 133:445–451

    Article  CAS  PubMed  Google Scholar 

  • Andrade JM, Arraiano CM (2008) PNPase is a key player in the regulation of small RNAs that control the expression of outer membrane proteins. RNA 14:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade JM, Cairrão F, Arraiano CM (2006) RNase R affects gene expression in stationary phase: regulation of ompA. Mol Microbiol 60:219–228

    Article  CAS  PubMed  Google Scholar 

  • Apirion D, Gitelman DR (1980) Decay of RNA in RNA processing mutants of Escherichia coli. Mol Gen Genet 177:339–343

    Article  CAS  PubMed  Google Scholar 

  • Apirion D, Lassar AB (1978) A conditional lethal mutant of Escherichia coli which affects the processing of ribosomal RNA. J Biol Chem 253:1738–1742

    CAS  PubMed  Google Scholar 

  • Apirion D, Watson N (1975) Mapping and characterization of a mutation in Escherichia coli that reduces the level of ribonuclease III specific for double-stranded ribonucleic acid. J Bacteriol 124:317–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apirion D, Watson N (1978) Ribonuclease III Is Involved in Motility of Escherichia coli. J Bacteriol 133:1543–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apirion D, Neil J, Watson N (1976) Consequences of losing ribonuclease III on the Escherichia coli cell. Mol Gen Genet 144:185–190

    Article  CAS  PubMed  Google Scholar 

  • Awano N, Inouye M, Phadtare S (2008) RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II. J Bacteriol 190:5924–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagheri S, Kashani-Sabet M (2004) Ribozymes in the age of molecular therapeutics. Curr Mol Med 4:489–506

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Trang P, Li H, Kim K, Zhou T, Liu F (2008) Effective inhibition in animals of viral pathogenesis by a ribozyme derived from RNase P catalytic RNA. Proc Natl Acad Sci U S A 105:10919–10924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Gong H, Li H, Vu GP, Lu S, Liu F (2011) Oral delivery of RNase P ribozymes by Salmonella inhibits viral infection in mice. Proc Natl Acad Sci U S A 108:3222–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardwell JC, Régnier P, Chen SM, Nakamura Y, Grunberg-Manago M, Court DL (1989) Autoregulation of RNase III operon by mRNA processing. EMBO J 8:3401–3407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becket E, Tse L, Yung M, Cosico A, Miller JH (2012) Polynucleotide phosphorylase plays an important role in the generation of spontaneous mutations in Escherichia coli. J Bacteriol 194:5613–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berchanski A, Lapidot A (2008) Bacterial RNase P RNA is a drug target for aminoglycoside-arginine conjugates. Bioconjug Chem 19:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Bessarab DA, Kaberdin VR, Wei CL, Liou GG, Lin-Chao S (1998) RNA components of Escherichia coli degradosome: evidence for rRNA decay. Proc Natl Acad Sci U S A 95:3157–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikoff EK, Gefter ML (1975) In vitro synthesis of transfer RNA. I. Purification of required components. J Biol Chem 250:6240–6247

    CAS  PubMed  Google Scholar 

  • Bisbal C, Martinand C, Silhol M, Lebleu B, Salehzada T (1995) Cloning and characterization of a RNAse L inhibitor. A new component of the interferon-regulated 2-5A pathway. J Biol Chem 270:13308–13317

    Article  CAS  PubMed  Google Scholar 

  • Bishayee S, Maitra U (1976) Specificity of cleavage by ribonuclease III. Biochem Biophys Res Comm 73:306–313

    Article  CAS  PubMed  Google Scholar 

  • Blouin RT, Zaniewski R, Deutscher MP (1983) Ribonuclease D is not essential for the normal growth of Escherichia coli or bacteriophage T4 or for the biosynthesis of a T4 suppressor tRNA. J Biol Chem 258:1423–1426

    CAS  PubMed  Google Scholar 

  • Bothwell AL, Stark BC, Altman S (1976) Ribonuclease P substrate specificity: cleavage of a bacteriophage phi80-induced RNA. Proc Natl Acad Sci U S A 73:1912–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvet P, Belasco JG (1992) Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360:488–491

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature (London, U K) 190:576–581

    Google Scholar 

  • Brummond DO, Staehelin M, Ochoa S (1957) Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotide phosphorylase. J Biol Chem 225:835–849

    CAS  PubMed  Google Scholar 

  • Bruscella P, Shahbabian K, Laalami S, Putzer H (2011) RNase Y is responsible for uncoupling the expression of translation factor IF3 from that of the ribosomal proteins L35 and L20 in Bacillus subtilis. Mol Microbiol 81:1526–1541

    Article  CAS  PubMed  Google Scholar 

  • Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, Luisi BF (2005) Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437:1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Campbell E, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912

    Article  CAS  PubMed  Google Scholar 

  • Carbon JA (1962) The inhibition of polynucleotide phosphorylase by 6-mercaptopurine riboside 5′-diphosphate. Biochem Biophys Res Commun 7:366–369

    Article  CAS  PubMed  Google Scholar 

  • Carpousis AJ (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87

    Google Scholar 

  • Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM (1994) Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76:889–900

    Article  CAS  PubMed  Google Scholar 

  • Carzaniga T, Briani F, Zangrossi S, Merlino G, Marchi P, Dehò G (2009) Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited. J Bacteriol 191:1738–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casaregola S, Jacq A, Laoudj D, Mcgurk G, Margarson S, Tempete M, Norris V, Holland IB (1994) Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. J Mol Biol 238:867 (correction of: J Mol Biol 1992 Nov 5; 228:30–40)

    Google Scholar 

  • Case LM, Chen XN, Deutscher MP (1989) Localization of the Escherichia coli rnt gene encoding RNase T by using a combination of physical and genetic mapping. J Bacteriol 171:5736–5737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti A, Jha BK, Silverman RH (2011) New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 31:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran V, Luisi BF (2006) Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol 358:8–15

    Article  CAS  PubMed  Google Scholar 

  • Chang SA, Cozad M, Mackie GA, Jones GH (2008) Kinetics of polynucleotide phosphorylase: comparison of enzymes from Streptomyces and Escherichia coli and effects of nucleoside diphosphates. J Bacteriol 190:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier X, Faucher SP, Kalachikov S, Shuman HA (2008) Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol 190:8126–8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Deutscher MP (2005) Elevation of RNase R in response to multiple stress conditions. J Biol Chem 280:34393–34396

    Article  CAS  PubMed  Google Scholar 

  • Chen H-W, Rainey RN, Balatoni CE, Dawson DW, Troke JJ, Wasiak S, Hong J, McBride HM, Koehler CM, Teitell MA, French SW (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng ZF, Deutscher MP (2002) Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem 277:21624–21629

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZF, Deutscher MP (2003) Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc Nat l Acad Sci U S A 100:6388–6393

    Article  CAS  Google Scholar 

  • Cheng ZF, Deutscher MP (2005) An important role for RNase R in mRNA decay. Mol Cell 17:313–318

    Article  CAS  PubMed  Google Scholar 

  • Childs JL, Poole AW, Turner DH (2003) Inhibition of Escherichia coli RNase P by oligonucleotide directed misfolding of RNA. RNA 9:1437–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chlebowski A, Tomecki R, López ME, Séraphin B, Dziembowski A (2011) Catalytic properties of the eukaryotic exosome. Adv Exp Med Biol 702:63–78

    Article  PubMed  Google Scholar 

  • Chou JY, Singer MF (1971) Deoxyadenosine diphosphate as a substrate and inhibitor of polynucleotide phosphorylase of Micrococcus luteus. I. Deoxyadenosine diphosphate as a substrate for polymerization and the exchange reaction with inorganic 32 P. J Biol Chem 246:7486–7496

    CAS  PubMed  Google Scholar 

  • Cobaleda C, Sánchez-Garcí́a I (2001) RNase P: from biological function to biotechnological applications. Trends Biotechnol 19:406–411

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Ertürk E, Bryan GT (1970) Carcinogenicity of Formic Acid 2-[4-(5-Nitro-2-furyl)-2-thiazolyl]hydrazide in Swiss Mice. Cancer Res 30:906–912

    CAS  PubMed  Google Scholar 

  • Cohen SM, Ertürk E, von Esch AM, Crovetti AJ, Bryan GT (1973) Carcinogenicity of 5-Nitrofurans, 5-Nitroimidazoles, 4-Nitrobenzenes, and Related Compounds. J Natl Cancer Inst 57:403–417

    Google Scholar 

  • Craine JE, Klee CB (1976) A deoxyadenylate kinase activity associated with polynucleotide phosphorylase from Micrococcus luteus. Nucleic Acids Res 3:2923–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craven MG, Henner DJ, Alessi D, Schauer AT, Ost KA, Deutscher MP, Friedman DI (1992) Identification of the rph (RNase PH) gene of Bacillus subtilis: evidence for suppression of cold-sensitive mutations in Escherichia coli. J Bacteriol 174:4727–4735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crofton S, Dennis PP (1983) Cloning and orientation of the gene encoding polynucleotide phosphorylase in Escherichia coli. J Bacteriol 154:58–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cudny H, Deutscher MP (1980) Apparent involvement of ribonuclease D in the 3′ processing of tRNA precursors. Proc Natl Acad Sci U S A 77:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cudny H, Zaniewski R, Deutscher MP (1981a) Escherichia coli RNase D. Purification and structural characterization of a putative processing nuclease. J Biol Chem 256:5627–5632

    CAS  PubMed  Google Scholar 

  • Cudny H, Zaniewski R, Deutscher MP (1981b) Escherichia coli RNase D. Catalytic properties and substrate specificity. J Biol Chem 256:5633–5637

    CAS  PubMed  Google Scholar 

  • Cuellar WJ, Kreuze JF, Rajamäki ML, Cruzado KR, Untiveros M, Valkonen JP (2009) Elimination of antiviral defense by viral RNase III. Proc Natl Acad Sci U S A 106:10354–10358

    Article  PubMed  PubMed Central  Google Scholar 

  • Daoud R, Forget L, Lang BF (2012) Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex. Nucleic Acids Res 40:1728–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP (2003) Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs. Biochem J 374:799–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451:355–358

    Article  CAS  PubMed  Google Scholar 

  • Decker T, Muller M, Stockinger S (2005) The yin and yang of type I interferon activity in bacterial infection. Nat Rev 5:675–687

    Google Scholar 

  • Deikus G, Condon C, Bechhofer DH (2008) Role of Bacillus subtilis RNase J1 endonuclease and 5′-exonuclease activities in trp leader RNA turnover. J Biol Chem 283:17158–17167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Favero M, Mazzantini E, Briani F, Zangrossi S, Tortora P, Dehò G (2008) Regulation of Escherichia coli polynucleotide phosphorylase by ATP. J Biol Chem 283:27355–27359

    Article  PubMed  CAS  Google Scholar 

  • Delviks-Frankenberry KA, Nikolenko GN, Pathak VK (2010) The “connection” between HIV drug resistance and RNase H. Viruses 2:1476–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher MP (1990) Ribonucleases, tRNA nucleotidyltransferase, and the 3′ processing of tRNA. Prog Nucl Acid Res Mol Biol 39:209–240

    Article  CAS  Google Scholar 

  • Deutscher MP, Marlor CW (1985) Purification and characterization of Escherichia coli RNase T. J Biol Chem 260:7067–7071

    CAS  PubMed  Google Scholar 

  • Deutscher MP, Marshall GT, Cudny H (1988) RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc Natl Acad Sci U S A 85:4710–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Santo R (2011) Diketo acids derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. Curr Med Chem 18:3335–3342

    Article  PubMed  Google Scholar 

  • DiMari JF, Bechhofer DH (1993) Initiation of mRNA decay in Bacillus subtilis. Mol Microbiol 7:705–717

    Article  CAS  PubMed  Google Scholar 

  • Donovan WP, Kushner SR (1983) Amplification of ribonuclease II (rnb) activity in Escherichia coli K12. Nucleic Acids Res 11:265–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A 83:120–124

    Google Scholar 

  • Dougherty JP, Samanta H, Farrell PJ, Lengyel P (1980) Interferon, double-stranded RNA, and RNA degradation. Isolation of homogeneous pppA(2′p5′A)n-1 synthetase from Ehrlich ascites tumor cells. J Biol Chem 255:3813–3816

    CAS  PubMed  Google Scholar 

  • Duncan MJ, Gorini L (1975) A Ribonucleoprotein Precursor of Both the 30S and 50S Ribosomal Subunits of Escherichia coli. Proc Nat Acad Sci U S A 72:1533–1537

    Article  CAS  Google Scholar 

  • Dunn JJ (1976) RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fidelity of cleavage. J Biol Chem 251:3807–3814

    CAS  PubMed  Google Scholar 

  • Dunn W, Trang P, Khan U, Zhu J, Liu F (2001) RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc Natl Acad Sci U S A 98:14831–14836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand S, Gilet L, Bessières P, Nicolas P, Condon C (2012a) Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of Bacillus subtilis mRNAs. PLoS Genet 8:e1002520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand S, Gilet L, Condon C (2012b) The essential function of B. subtilis RNase III is to silence foreign toxin genes. PLoS Genet 8:e1003181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ (2008) Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190(3):1084–1096

    Google Scholar 

  • Dutta T, Deutscher MP (2009) Catalytic properties of RNase BN/RNase Z from Escherichia coli: RNase BN is both an exo- and endoribonuclease. J Biol Chem 284:15425–15431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ecker RE, Lockhart WR (1961) Specific effect of limiting nutrient on physiological events during culture growth. J Bacteriol 84:511–516

    Google Scholar 

  • Ehretsmann CP, Carpousis AJ, Krisch HM (1992) Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev 6:149–159

    Article  CAS  PubMed  Google Scholar 

  • Eubank TD, Biswas R, Jovanovic M, Litovchick A, Lapidot A, Gopalan V (2002) Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett 511:107–112

    Article  CAS  PubMed  Google Scholar 

  • Even S, Pellegrini O, Zig L, Labas V, Vinh J, Bréchemmier-Baey D, Putzer H (2005) Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33:2141–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eymann C, Mittenhuber G, Hecker M (2001) The stringent response, sigmaH-dependent gene expression and sporulation in Bacillus subtilis. Mol Gen Genet 264:913–923

    Article  CAS  PubMed  Google Scholar 

  • Figaro S, Durand S, Gilet L, Cayet N, Sachse M, Condon C (2013) Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol 195:2340–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gacto M, Madrid M, Franco A, Soto T, Cansado J, Vicente-Soler J (2014) The cornerstone of nucleic acid-affecting antibiotics in bacteria. In: Villa TG, Veiga-Crespo P (eds) Antimicrobial compounds: current strategies and new alternatives. Springer, Heidelberg, pp 149–175

    Chapter  Google Scholar 

  • Garcia-Segura JM, Orozco MM, Fominaya JM, Gavilanes JG (1986) Purification, molecular and enzymic characterization of an acid RNase from the insect Ceratitis capitata. Eur J Biochem 158:367–372

    Article  CAS  PubMed  Google Scholar 

  • Gardiner K, Pace NR (1980) RNase P of Bacillus subtilis has a RNA component. J Biol Chem 255:7507–7509

    CAS  PubMed  Google Scholar 

  • Gegenheimer P, Apirion D (1981) Processing of procaryotic ribonucleic acid. Microb Rev 45:502–541

    CAS  Google Scholar 

  • Ghora BK, Apirion D (1979) Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5 S rRNA sequences. J Biol Chem 254:1951–1956

    CAS  PubMed  Google Scholar 

  • Ghosh RK, Deutscher MP (1978) Identification of an Escherichia coli nuclease acting on structurally altered transfer RNA molecules. J Biol Chem 253:997–1000

    CAS  PubMed  Google Scholar 

  • Ginsburg D, Steitz JA (1975) The 30 S ribosomal precursor RNA from Escherichia coli. A primary transcript containing 23 S, 16 S, and 5 S sequences. J Biol Chem 250:5647–5654

    CAS  PubMed  Google Scholar 

  • Goedken ER, Marqusee S (2001) Native-state energetics of a thermostabilized variant of ribonuclease HI. J Mol Biol 314:863–871

    Article  CAS  PubMed  Google Scholar 

  • Gold HA, Craft J, Hardin JA, Bartkiewicz M, Altman S (1988) Antibodies in human serum that precipitate ribonuclease P. Proc Natl Acad Sci U S A 85:5483–5487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldblum K, Apririon D (1981) Inactivation of the ribonucleic acid-processing enzyme ribonuclease E blocks cell division. J Bacteriol 146:128–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513

    Article  PubMed  CAS  Google Scholar 

  • Gruegelsiepe H, Brandt O, Hartmann RK (2006) Antisense inhibition of RNase P: mechanistic aspects and application to live bacteria. J Biol Chem 281:30613–30620

    Article  CAS  PubMed  Google Scholar 

  • Grunberg-Manago M, Oritz PJ, Ochoa S (1955) Enzymatic synthesis of nucleic acidlike polynucleotides. Science 122:907–910

    Article  CAS  PubMed  Google Scholar 

  • Grunberg-Manago M, Oritz PJ, Ochoa S (1956) Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. Biochim Biophys Acta 20:269–285

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Eder PS, Gopalan V, Altman S (2002) Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA 8:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillet V, Lapthorn A, Hartley RW, Mauguen Y (1993) Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1:165–176

    Article  CAS  PubMed  Google Scholar 

  • Gulick ZR, Heymann H, De Boer CJ, De Stevens G, Mayer RL (1958) The inhibition of ribonuclease by acidic polymers and their use as possible antiviral agents. Arch Biochem Biophys 73:366–383

    Article  CAS  PubMed  Google Scholar 

  • Haddad N, Burns CM, Bolla JM, Prevost H, Fédérighi M, Drider D, Cappelier JM (2009) Long-term survival of Campylobacter jejuni at low temperatures is dependent on polynucleotide phosphorylase activity. Appl Environ Microbiol 75:7310–7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajnsdorf E, Steier O, Coscoy L, Teysset L, Régnier P (1994) Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO 13:3368–3377

    CAS  Google Scholar 

  • Hartley RW (1989) Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci 14:450–454

    Article  CAS  PubMed  Google Scholar 

  • Hartmann E, Hartmann RK (2003) The enigma of ribonuclease P evolution. Trends Genet 19:561–569

    Article  CAS  PubMed  Google Scholar 

  • Haseltine W, Block R (1973) Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A 70:1564–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrlich P, Schweiger M (1976) Nitrofurans, a group of synthetic antibiotics, with a new mode of action: discrimination of specific messenger RNA classes. Proc Natl Acad Sci U S A 73:3386–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herskovitz MA, Bechhofer DH (2000) Endoribonuclease RNase III is essential in Bacillus subtilis. Mol Microbiol 38:1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Hertweck M, Hiller R, Mueller MW (2002) Inhibition of nuclear pre-mRNA splicing by antibiotics in vitro. Eur J Biochem 269:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hnatyszyn HJ, Spruill G, Young AK, Seivright R, Kraus G (2001) Long-term RNase P-mediated inhibition of HIV-1 replication and pathogenesis. Gene Ther 8:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Holm T (1957) Continuous culture studies on glycogen synthesis in Escherichia coli B. Acta Chem Scand 11:763–775

    Google Scholar 

  • Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Tran QA, Keiler KC (2005) Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol Microbiol 57:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori Y, Bichenkova EV, Wilton AN, Tanaka T, Douglas KT, Kikuchi Y (2002) Porphyrins and porphines inhibit the ribonuclease P reaction in vitro. Nucleic Acids Res Suppl 2:111–112

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Rogert MC, Tanaka T, Kikuchi Y, Bichenkova EV, Wilton AN, Gbaj A, Douglas KT (2005) Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction. Biochim Biophys Acta 1730:47–55

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Deutscher MP (1992) Sequence and TranscriptionalA nalysis of the Escherichia coli rnt Gene Encoding RNase. J Biol Chem 267:25609–25613

    CAS  PubMed  Google Scholar 

  • Hussain M, Abraham AM, Asgari S (2010) An Ascovirus-encoded RNase III autoregulates its expression and suppresses RNA interference-mediated gene silencing. J Virol 84:3624–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Habu Y, Miyano-Kurosaki N, Takaku H (2006) Suppression of HIV-1 replication by a combination of endonucleolytic ribozymes (RNase P and tRNnase ZL). Nucleosides, Nucleotides Nucleic Acids 25:427–437

    Article  CAS  PubMed  Google Scholar 

  • Irschik H, Jansen R, Gerth K, Hofle G, Reichenbach H (1985) The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot 40:7–13

    Article  Google Scholar 

  • Ishii R, Nureki O, Yokoyama S (2003) Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 278:32397–32404

    Article  CAS  PubMed  Google Scholar 

  • Jacob AI, Köhrer C, Davies BW, RajBhandary UL, Walker GC (2013) Conserved bacterial RNase YbeY plays key roles in 70S ribosome quality control and 16S rRNA maturation. Mol Cell 49:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson A, Gillespie D (1968) Metabolic events occurring during recovery from prolonged glucose starvation in Escherichia coli. J Bacteiol 95:1030–1039

    CAS  Google Scholar 

  • Jain C, Belasco JG (1995) RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev 9:84–96

    Article  CAS  PubMed  Google Scholar 

  • James BD, Olsen GJ, Liu JS, Pace NR (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52:19–26

    Article  CAS  PubMed  Google Scholar 

  • Jensen KF, Andersen JT, Poulsen P (1992) Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli. J Biol Chem 267:17147–17152

    CAS  PubMed  Google Scholar 

  • Jochmans D (2008) Novel HIV-1 reverse transcriptase inhibitors. Virus Res 134:171–185

    Article  CAS  PubMed  Google Scholar 

  • Julien J, Rosset R, Monier R (1967) Metabolisme des acides ribonucleiques chez Escherichia coli carence en phosphate. Bull SocChim Biol 49:131–145

    Google Scholar 

  • Kalavrizioti D, Vourekas A, Tekos A, Tsagla A, Stathopoulos C, Drainas D (2003) Kinetics of inhibition of ribonuclease P activity by peptidyltransferase inhibitors. Effect of antibiotics on RNase P. Mol Biol Rep 30:9–14

    Article  CAS  PubMed  Google Scholar 

  • Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS (2008) Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 38:1574–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan R, Apirion D (1974) The involvement of ribonuclease I, ribonuclease II, and polynucleotide phosphorylase in the degradation of stable ribonucleic acid during carbon starvation in Escherichia coli. J Biol Chem 249:149–151

    Google Scholar 

  • Kaplan R, Apirion D (1975) The fate of ribosomes in Escherichia coli cells starved for a carbon source. J Biol Chem 250:1854–1863

    CAS  PubMed  Google Scholar 

  • Kasai K, Uchida T, Egami F, Yoshida K, Nomoto M (1969) Purification and crystallization of ribonuclease N1 from Neurospora crassa. J Biochem (Tokyo) 66:389–396

    CAS  Google Scholar 

  • Kawamoto SA, Sudhahar CG, Hatfield CL, Sun J, Behrman EJ, Gopalan V (2008) Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucleic Acids Res 36:697–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KO, Deutscher MP (1992) The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J Bacteriol 174:6682–6684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KO, Reuven NB, Li Z, Deutscher MP (1992) RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. J Biol Chem 267:16015–16018

    CAS  PubMed  Google Scholar 

  • Khan ZA, Fraenkel-Conrat H (1983) Purification and characterization of polynucleotide phosphorylase from cucumber. Proc Natl Acad Sci U S A 82:1311–1315

    Article  Google Scholar 

  • Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A (1995) Structure of the dsRNA binding domain of Ecoli RNase III. EMBO J 14:3572–3584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khemici V, Poljak L, Luisi BF, Carpousis AJ (2008) The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 70:799–813

    CAS  PubMed  Google Scholar 

  • Khorana GH (1961) Phosphodiesterases. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes 5, 2nd edn. Academic Press, New York, pp 79–89

    Google Scholar 

  • Kim K, Umamoto S, Trang P, Hai R, Liu F (2004) Intracellular expression of engineered RNase P ribozymes effectively blocks gene expression and replication of human cytomegalovirus. RNA 10:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimhi Y, Littauer UZ (1968) Purification and Properties of Polynucleotide Phosphorylase from E. coli. J Biol Chem 243:231–240

    Google Scholar 

  • Kinscherf TG, Apirion D (1975) Polynucleotide phosphorylase can participate in decay of mRNA in Escherichia coli in the absence of ribonuclease II. Mol Gen Genet 139:357–362

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K, Miyazaki K (2011) Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat Commun 2:549

    Article  PubMed  CAS  Google Scholar 

  • Kivity-Vogel T, Elson D (1968) A correlation between ribonuclease II and the in vivo inactivation of messenger RNA in E. coli. Biochem Biophys Res Commun 33:412–417

    Article  CAS  PubMed  Google Scholar 

  • Klee WA (1965) Ribonuclease E, an Intermediate in the degradation of ribonuclease by porcine elastase. J Biol Chem 240:2900–2906

    CAS  PubMed  Google Scholar 

  • Ko JH, Izadjoo M, Altman S (2008) Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P. RNA 14:1656–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobe B, Deisenhofer J (1993) Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366:751–756

    Article  CAS  PubMed  Google Scholar 

  • Kole R, Altman S (1979) Reconstitution of RNase P activity from inactive RNA and protein. Proc Natl Acad Sci U S A 1979 A76:3795–3799

    Google Scholar 

  • Kole R, Altman S (1981) Properties of purified ribonuclease P from Escherichia coli Biochemistry 20:1902–1906

    Google Scholar 

  • Kovacs L, Csanadi A, Megyeri K, Kaberdin VR, Miczak A (2005) Mycobacterial RNase E-associated proteins. Microbiol Immunol 49:1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Kunzmann A, Brennicke A, Marchfelder A (1998) 5′ end maturation and RNA editing have to precede tRNA 3′ processing in plant mitochondria. Proc Natl Acad Sci U S A 95:108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laalami S, Bessières P, Rocca A, Zig L, Nicolas P, Putzer H (2013) Bacillus subtilis RNase Y activity in vivo analysed by tiling microarrays. PLoS ONE 8:e54062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamontagne B, Larose S, Boulanger J, Elela S (2001) The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 3:71–78

    CAS  PubMed  Google Scholar 

  • Lawrence NP, Altman S (1986) Site-directed mutagenesis of M1 RNA, the RNA subunit of Escherichia coli ribonuclease P. The effects of an addition and small deletions on catalytic function. J Mol Biol 191:163–175

    Article  CAS  PubMed  Google Scholar 

  • Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, Herzberg C, Commichau FM, Lewis RJ, Stülke J (2011a) RNase Y in Bacillus subtilis: a natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J Bacteriol 193:5431–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J (2011b) RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol Microbiol 81:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Lehnik-Habrink M, Lewis RJ, Mäder U, Stülke J (2012) RNA degradation in Bacillus subtilis: an interplay of essential endo—and exoribonucleases. Mol Microbiol 84:1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Lennette ET, Gorelic L, Apirion D (1971) An Escherichia coli mutant with increased messenger ribonuclease activity. Proc Natl Acad Sci U S A 68:3140–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li de la Sierra-Gallay I, Pellegrini O, Condon C (2005) Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433:657–661

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Deutscher MP (1995) The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc Natl Acad Sci U S A 92:6883–6886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1999) Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T. RNA 5:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Ezelle HJ, Kangd TJ, Zhangd L, Shirey KA, Harro J, Hasdaye JD, Ohapatrai SK, Crastai OR, Vogel SN, Cross AS, Hassela BA (2008) An essential role for the antiviral endoribonuclease, RNase-L, in antibacterial immunity. Proc Natl Acad Sci 105:20816–20821

    Google Scholar 

  • Liang W, Deutscher MP (2013) Ribosomes regulate the stability and action of the exoribonuclease RNase R. J Biol Chem 288:34791–34798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou GG, Jane WN, Cohen SN, Lin NS, Lin-Chao S (2001) RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc Natl Acad Sci USA 98:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long TM, Chakrabarti A, Ezelle HJ, Brennan-Laun SE, Raufman JP, Polyakova I, Silverman RH, Hassel BA (2013) RNase-L deficiency exacerbates experimental colitis and colitis-associated cancer. Inflamm Bowel Dis 19:1295–1305

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorentzen E, Conti E (2012) Crystal structure of a 9-subunit archaeal exosome in pre-catalytic states of the phosphorolytic reaction. Archaea 2012:721869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacGregor CH, Arora SK, Hager PW, Dail MB, Phibbs PV Jr (1996) The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product. J Bacteriol 178:5627–9635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mäder U, Zig L, Kretschmer J, Homuth G, Putzer H (2008) mRNA processing by RNases J1 and J2 affects Bacillus subtilis gene expression on a global scale. Mol Microbiol 70:183–196

    Article  PubMed  CAS  Google Scholar 

  • Magoulas G, Papaioannou D, Papadimou E, Drainas D (2009) Preparation of spermine conjugates with acidic retinoids with potent ribonuclease P inhibitory activity. Eur J Med Chem 44:2689–2695

    Article  CAS  PubMed  Google Scholar 

  • Mamula MJ, Baer M, Craft J, Altman S (1989) An immunological determinant of RNase P protein is conserved between Escherichia coli and humans. Proc Natl Acad Sci U S A 86:8717–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manasherob R, Miller C, Kim KS, Cohen SN (2012) Ribonuclease E modulation of the bacterial SOS response. PLoS ONE 7:e38426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • March PE, Ahnn J, Inouye M (1985) The DNA sequence of the gene (rnc) encoding ribonuclease III of Escherichia coli. Nucleic Acids Res 13:4677–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcha LG, Jones GH (2010) (p)ppGpp Inhibits Polynucleotide Phosphorylase from Streptomyces but Not from Escherichia coli and Increases the Stability of Bulk mRNA in Streptomyces coelicolor. J Bacteriol 192:4275–4280

    Article  CAS  Google Scholar 

  • Martinand C, Salehzada T, Silhol M, Lebleu B, Bisbal C (1998) RNase L inhibitor (RLI) antisense constructions block partially the down regulation of the 2-5A/RNase L pathway in encephalomyocarditis-virus-(EMCV)-infected cells. Eur J Biochem 254:248–255

    Article  CAS  PubMed  Google Scholar 

  • Mathy N, Benard L, Pellegrini O, Daou R, Wen T, Condon C (2007) 5′-to-3′ Exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5´ stability of mRNA. Cell 129:681–692

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga J, Simons EL, Simons RW (1997) Escherichia coli RNase III (rnc) autoregulation occurs independently of rnc gene translation. Mol Microbiol 26:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Mattijssen S, Hinson ER, Onnekink C, Hermanns P, Zabel B, Cresswell P, Pruijn GJM (2011) Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease. Cell Mol Life Sci 68:2469–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus-Ortega ME, Regonesi ME, Piña-Escobedo A, Tortora P, Dehò G, García-Mena J (2007) The KH and S1 domains of Escherichia coli polynucleotide phosphorylase are necessary for autoregulation and growth at low temperature. Biochim Biophys Acta 1769:194–203

    Article  CAS  PubMed  Google Scholar 

  • Mayer JE, Schweiger M (1983) RNase I11 Is Positively Regulated by T7 Protein Kinase. J Biol Chem 258:5340–5343

    CAS  PubMed  Google Scholar 

  • Mayer M, Schiffer S, Marchfelder A (2000) tRNA 3′ processing in plants: nuclear and mitochondrial activities differ. Biochemistry 39:2096–2105

    Article  CAS  PubMed  Google Scholar 

  • McCalla DR (1964) Effects of Some Nitrofurans on DNA Synthesis and Prophage Induction. Can J Biochem 42:1245–1247

    Article  CAS  PubMed  Google Scholar 

  • McCalla DR, Voutsinos D (1974) On the mutagenicity of nitrofurans. Mutation Res 26:3–16

    Article  CAS  PubMed  Google Scholar 

  • McCalla DR, Reuvers A, Kaiser C (1971) Breakage of bacterial DNA by nitrofuran derivatives. Cancer Res 31:2184–2188

    CAS  PubMed  Google Scholar 

  • McDowall KJ, Lin-Chao S, Cohen SN (1994) A+ U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269:10790–10796

    CAS  PubMed  Google Scholar 

  • McDowall KJ, Kaberdin VR, Wu SW, Cohen SN, Lin-Chao S (1995) Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature 374:287–290

    Article  CAS  PubMed  Google Scholar 

  • McLellan WL, Vogel HJ (1970) Translational repression in the arginine system of E. coli. Proc Natl Acad Sci U S A 67:1703–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMurry LM, Levy SB (1987) Tn5 insertion in the polynucleotide phosphorylase (pnp) gene in Escherichia coli increases susceptibility to antibiotics. J Bacteriol 169:1321–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miczak A, Srivastava RA, Apirion D (1991) Location of the RNA-processing enzymes RNase III, RNase E and RNase P in the Escherichia coli cell. Mol Microbiol 5:1801–1810

    Article  CAS  PubMed  Google Scholar 

  • Misra TK, Apirion D (1979) RNase E, an RNA processing enzyme from Escherichia coli. J Biol Chem 254:11154–11159

    CAS  PubMed  Google Scholar 

  • Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U S A 82:7096–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira RN, Domingues S, Viegas SC, Amblar M, Arraiano CM (2012) Synergies between RNA degradation and trans-translation in Streptococcus pneumoniae: cross regulation and co-transcription of RNase R and SmpB. BMC Microbiol 12:268–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JE, Price JM, Lalich LJ, Stein RJ (1969) The carcinogenic activity of some 5-Nitrofuran derivatives in the rat. Cancer Res 29:2145–2156

    CAS  PubMed  Google Scholar 

  • Mudd EA, Higgins CF (1993) Escherichia coli endoribonuclease RNase E: autoregulation of expression and site-specific cleavage of mRNA. Mol Microbiol 9:557–568

    Article  CAS  PubMed  Google Scholar 

  • Mudd EA, Prentki P, Belin D, Krisch HM (1988) Processing of unstable bacteriophage T4 gene 32 mRNAs into a stable species requires Escherichia coli ribonuclease E. EMBO J 7:3601–3607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd EA, Carpousis AJ, Krisch HM (1990a) Escherichia coli RNase E has a role in the decay of bacteriophage T4 mRNA. Genes Dev 4:873–881

    Article  CAS  PubMed  Google Scholar 

  • Mudd EA, Krisch HM, Higgins CF (1990b) RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus. Mol Microbiol 4:2127–2135

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee U, Chatterjee SN (1992) In-vitro interaction between nitrofurantoin and vibrio cholerae DNA. Chem Biol Interact 82(1):111–121

    Article  CAS  PubMed  Google Scholar 

  • Nashimoto H, Uchida H (1985) DNA sequencing of the Escherichia coli ribonuclease III gene and its mutations. Mol Gen Genet 201:25–29

    Article  CAS  PubMed  Google Scholar 

  • Nelson ChA, Hummel JP (1961) The Inhibition of Pancreatic Ribonuclease by 2′ Cytidylic Acid. J Biol Chem 236:3173–3176

    CAS  PubMed  Google Scholar 

  • Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR, Du D, Griffin JL, Callaghan AJ, Luisi BF (2011) Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. J Biol Chem 286:14315–14323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara EB, Chekanova JA, Ingle CA, Zeeva R, Kushner E, Peters E, Kushner SR (1995) Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci U S A 92:1807–1811

    Google Scholar 

  • Ost KA, Deutscher MP (1990) RNase PH catalyzes a synthetic reaction, the addition of nucleotides to the 3′ end of RNA. Biochimie 72:813–818

    Article  CAS  PubMed  Google Scholar 

  • Ost KA, Deutscher MP (1991) Escherichia coli orfE (upstream of pyrE) encodes RNase PH. J Bacteriol 173:5589–5591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oussenko IA, Abe T, Ujiie H, Muto A, Bechhofer DH (2005) Participation of 3′-to-5′ exoribonucleases in the turnover of Bacillus subtilis mRNA. J Bacteriol 187:2758–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabha KP, Deutscher MP (1991) RNase T affects Escherichia coli growth and recovery from metabolic stress. J Bacteriol 173:1376–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey M, Rath PC (2004) Expression of interferon-inducible recombinant human RNase L causes RNA degradation and inhibition of cell growth in Escherichia coli. Biochem Biophys Res Commun 317:586–597

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Georgiou S, Tsambaos D, Drainas D (1998) Inhibition of ribonuclease P activity by retinoids. J Biol Chem 273:24375–24378

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Monastirli A, Stathopoulos C, Tsambaos D, Drainas D (2000a) Modulation of ribonuclease P activity by calcipotriol. Eur J Biochem 267:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Monastirli A, Tsambaos D, Drainas D (2000b) Additive inhibitory effect of calcipotriol and anthralin on ribonuclease P activity. Biochem Pharmacol 60:91–94

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Monastirli A, Tsambaos D, Merk HF, Drainas D (2000c) Inhibitory effects of arotinoids on tRNA biogenesis. Skin Pharmacol Appl Skin Physiol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Pavlidou D, Séraphin B, Tsambaos D, Drainas D (2003) Retinoids inhibit human epidermal keratinocyte RNase P activity. Biol Chem 384:457–462

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini O, Nezzar J, Marchfelder A, Putzer H, Condon C (2003) Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J 22:4534–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perwez T, Kushner SR (2006) RNase Z in Escherichia coli plays a significant role in mRNA decay. Mol Microbiol 60:723–737

    Google Scholar 

  • Piazza F, Zappone M, Sana M, Briani F, Dehò G (1996) Polynucleotide phosphorylase of Escherichia coli is required for the establishment of bacteriophage P4 immunity. J Bacteriol 178:5513–5521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pines OH, Yoon J, Inouye M (1988) Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae. J Bacteriol 170:2989–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plautz G, Apirion D (1981) Processing of RNA in Escherichia coli is limited in the absence of ribonuclease III, ribonuclease E and ribonuclease P. J Mol Biology 149:813–819

    Article  CAS  Google Scholar 

  • Portier C, Dondon L, Grunberg-Manago M, Régnier P (1987) The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. EMBO J 6:2165–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price B, Adamidis T, Kong R, Champness W (1999) A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J Bacteriol 181:6142–6151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pronin SV, Kozmin SA (2010) Synthesis of streptolydigin, a potent bacterial RNA polymerase inhibitor. J Am Chem Soc 132:14394–14396

    Article  CAS  PubMed  Google Scholar 

  • Purusharth RI, Madhuri B, Ray MK (2007) Exoribonuclease R in Pseudomonas syringae is essential for growth at low temperature and plays a novel role in the 3′ end processing of 16 and 5 S ribosomal RNA. J Biol Chem 282:16267–16277

    Article  CAS  PubMed  Google Scholar 

  • Rainey RN, Glavin JD, Chen HW, French SW, Teitell MA, Koehler CM (2006) A new function in translocation for the mitochondrial i-AAA Protease Yme 1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 26:8488–8497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randau L, Schröder I, Söll D (2008) Life without RNase P. Nature 453:120–123

    Google Scholar 

  • Rath D, Mangoli SH, Pagedar AR, Jawali N (2012) Involvement of pnp in survival of UV radiation in Escherichia coli K-12. Microbiology 158:1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Apirion D (1980) Cloning the gene for ribonuclease E, an RNA processing enzyme. Gene 12:87–94

    Article  CAS  PubMed  Google Scholar 

  • Ray BK, Apirion D (1981) Transfer RNA precursors are accumulated in Escherichia coli in the absence of RNase E. Eur J Biochem 114:517–524

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Apirion D (1982) Characterization of DNA from the rne gene of Escherichia coli: uniqueness of the rne DNA. Biochem Biophys Res Comm 107:361–1367

    Google Scholar 

  • Rech J, Cathala G, Jeanteur P (1976) Partial purification of a double-stranded RNA specific ribonuclease (RNAse D) from Krebs II ascites cells. Nucleic Acids Res 3:2055–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddi KK, Mauser LJ (1965) Studies on the formation of tobacco mosaic virus ribonucleic acid. VI. Mode of degradation of host ribonucleic acid to ribonucleosides and their conversion to ribonucleoside 5′-phosphates. Proc Natl Acad Sci U S A 53:607–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Régnier P, Grunberg-Manago M, Portier C (1987) Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem 262:63–68

    Google Scholar 

  • Reiner R, Ben-Asouli Y, Krilovetzky I, Jarrous N (2006) A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 20:1621–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuven NB, Deutscher MP (1993) Multiple exoribonucleases are required for the 3′ processing of Escherichia coli tRNA precursors in vivo. FASEB J 7:143–148

    CAS  PubMed  Google Scholar 

  • Robertson HD, Dunn JJ (1975) Ribonucleic acid processing activity of Escherichia coli ribonuclease III. J Biol Chem 250:3050–3056

    CAS  PubMed  Google Scholar 

  • Robertson HD, Webster RE, Zinder ND (1968) Purification and properties of ribonuclease III from E. coli. J Biol Chem 243:82–91

    CAS  PubMed  Google Scholar 

  • Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem 247:5243–5251

    CAS  PubMed  Google Scholar 

  • Roth JS (1954) Ribonuclease. III. Ribonuclease activity in rat liver and kidney. J Biol Chem 208:181–194

    CAS  PubMed  Google Scholar 

  • Rothemund P (1935) Formation of porphyrins from pyrrole and aldehydes. J Am Chem Soc 57:2010–2011

    Article  CAS  Google Scholar 

  • Sala CD, Soler-Bistué AJ, Korprapun L, Zorreguieta A, Tolmasky ME (2012) Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ. PLoS One 7:e47690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, Diamond MS (2006) PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 80:7009–7019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Fisher PB (2006) Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects”. Cell Cycle 5:1080–1084

    Article  CAS  PubMed  Google Scholar 

  • Schierling K, Rösch S, Rupprecht R, Schiffer S, Marchfelder A (2002) tRNA 3′ end maturation in archaea has eukaryotic features: the RNase Z from Haloferax volcanii. J Mol Biol 316:895–902

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TJ, Clark JE, Knotts TA (2009) Thermal and mechanical multistate folding of ribonuclease H. J Chem Phys 131:235101

    Article  PubMed  CAS  Google Scholar 

  • Schuck A, Diwa A, Belasco JG (2009) RNase E autoregulates its synthesis in Escherichia coli by binding directly to a stem-loop in the rne 5′ untranslated region. Mol Microbiol 72:470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sello JK, Buttner MJ (2008) The gene encoding RNase III in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and for proper sporulation. J Bacteriol 190:4079–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbabian K, Jamalli A, Zig L, Putzer H (2009) RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28:3523–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro R (2001) Cytoplasmic ribonuclease inhibitor. Meth Enzymol 341:611–628

    Article  CAS  PubMed  Google Scholar 

  • Shinnick TM (ed) (1996) Current topics in microbiology and immunology: tuberculosis. Springer, New York

    Google Scholar 

  • Shors T, Jacobs BL (1997) Complementation of deletion of the vaccinia virus E3L gene by the Escherichia coli RNase III gene. Virology 227:77–87

    Article  CAS  PubMed  Google Scholar 

  • Siculella L, Damiano F, di Summa R, Tredici SM, Alduina R, Gnoni GV, Alifano P (2010) Guanosine 5′-diphosphate 3′-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a ‘rare’ actinomycete. Mol Microbiol 77:716–729

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Chang SJ, Lin PH, Averina OV, Kaberdin VR, Lin-Chao S (2009) Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc Natl Acad Sci U S A 106:864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slomovic S, Schuster G (2008) Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. RNA 14:310–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soler Bistué AJ, Martín FA, Vozza N, Ha H, Joaquín JC, Zorreguieta A, Tolmasky ME (2009) Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proc Natl Acad Sci U S A 106:13230–13235

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire J, Zhou A, Hassel BA, Nie H, Silverman RH (1994) Localization of the interferon-induced, 2′-5′A-dependent RNase gene (RNS4) to human chromosome 1q25. Genomics 19:174–175

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Srivastava RA (1996) Expression, purification and properties of recombinant E. coli ribonuclease III. Biochem Mol Biol Int 39:171–180

    CAS  PubMed  Google Scholar 

  • Srivastava SK, Cannistraro VJ, Kennell D (1992) Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli. J Bacteriol 174:56–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivatsan A, Wang JD (2008) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11:100–105

    Article  CAS  PubMed  Google Scholar 

  • Stark BC, Kole R, Bowman EJ, Altman S (1978) Ribonuclease P: an enzyme with an essential RNA component. Proc Natl Acad Sci U S A 75:3717–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stillman WB, Scott AB, Marion CJ (1943) Antiseptic. Patent US 2319481 A

    Google Scholar 

  • Subbarao MN, Makam H, Apirion D (1984) A site in a tRNA precursor that can be processed by the whole RNase P enzyme but not by the RNA alone. J Biol Chem 259:14339–14342

    CAS  PubMed  Google Scholar 

  • Sulthana S, Rajyaguru PI, Mittal P, Ray MK (2011) rnr gene from the antarctic bacterium Pseudomonas syringae Lz4W, encoding a psychrophilic RNase R. Appl Environ Microbiol 77:7896–7904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symmons MF, Jones GH, Luisi BF (2000) A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Symmons MF, Williams MG, Luisi BF, Jones GH, Carpousis AJ (2002) Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci 27:11–18

    Article  CAS  PubMed  Google Scholar 

  • Taghbalout A, Rothfield L (2007) RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc Natl Acad Sci U S A 104:1667–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K (1961) The structure and function of ribonuclease T1. I. Chromatographic purification and properties of ribonuclease T1. J Biochem (Tokyo) 49:1–8

    Article  CAS  Google Scholar 

  • Tekos A, Stathopoulos C, Tsambaos D, Drainas D (2004) RNase P: a promising molecular target for the development of new drugs. Curr Med Chem 11:2979–2989

    Article  CAS  PubMed  Google Scholar 

  • Tomcsányi T, Apirion D (1986) Processing enzyme ribonuclease E specifically cleaves RNA I. An inhibitor of primer formation in plasmid DNA synthesis. J Mol Biol 185:713–720

    Article  Google Scholar 

  • Trang P, Lee M, Nepomuceno E, Kim J, Zhu H, Liu F (2000) Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A 97:5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trang P, Hsu A, Zhou T, Lee J, Kilani AF, Nepomuceno E, Liu F (2002) Engineered RNase P ribozymes inhibit gene expression and growth of cytomegalovirus by increasing rate of cleavage and substrate binding. J Mol Biol 315:573–586

    Article  CAS  PubMed  Google Scholar 

  • Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA (2011) Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol 407:633–639

    Article  CAS  PubMed  Google Scholar 

  • Tupin A, Gualtieri M, Brodolin K, Leonetti JP (2009) Myxopyronin: a punch in the jaws of bacterial RNA polymerase. Future Microbiol 4:145–149

    Article  CAS  PubMed  Google Scholar 

  • Uchida I, Egami F (1967) The specificity of ribonuclease T2. J Biochem (Tokyo) 61:44–53

    CAS  Google Scholar 

  • Ueno Y, Yamada Y, Nakanishi M, Kitade Y (2003) A specific substrate-inhibitor, a 2′-deoxy-2′-fluorouridine-containing oligoribonucleotide, against human RNase L. Bioorg Med Chem 11:5069–5073

    Article  CAS  PubMed  Google Scholar 

  • Ulyanova V, Vershinina V, Ilinskaya O (2011) Barnase and binase: twins with distinct fates. FEBS J 278:3633–3643

    Article  CAS  PubMed  Google Scholar 

  • Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12:2770–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent HA, Deutscher MP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281:29769–29775

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, Dower KW, Lovett ST (1998) Identification of a potent DNase activity associated with RNase T of Escherichia coli. J Biol Chem 273:35126–35131

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, Lanjuin A, Lovett ST (1999) Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli. Genetics 151:929–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker SC, Engelke DR (2008) A protein-only RNase P in human mitochondria. Cell 135:412–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC 3rd, Koehler CM, Teitell MA (2010a) PNPASE regulates RNA import into mitochondria. Cell 142:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Siu SW, Gu W, Helms V (2010b) Downhill binding energy surface of the barnase–barstar complex. Biopolymers 93:977–985

    Article  CAS  PubMed  Google Scholar 

  • Watson N, Apirion D (1985) Molecular cloning of the gene for the RNA-processing enzyme RNase III of Escherichia coli. Proc Natl Acad Sci U S A 82:849–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen T, Oussenko IA, Pellegrini O, Bechhofer DH, Condon C (2005) Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis. Nucleic Acids Res 33:3636–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal H, Crouch RJ (1975) Cleavage of adenovirus messenger RNA and of 28S and 18S ribosomal RNA by RNase III. Proc Natl Acad Sci U S A 72:3077–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willkomm DK, Gruegelsiepe H, Goudinakis O, Kretschmer-Kazemi Far R, Bald R, Erdmann VA, Hartmann RK (2003) Evaluation of bacterial RNase P RNA as a drug target. Chembiochem 4:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Wilson HR, Yu D, Peters HH 3rd, Zhou JG, Court DL (2002) The global regulator RNase III modulates translation repression by the transcription elongation factor N. EMBO J 21:4154–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo WM, Lin-Chao S (1997) Processing of the rne transcript by an RNase E-independent amino acid-dependent mechanism. J Biol Chem 272:15516–15520

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Li Z (2008) Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun 372:288–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Xu H, Miraglia LJ, Crooke ST (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275:36957–36965

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Huang J, Cohen SN (2008) Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J Bacteriol 190:5526–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahagi T, Nagao M, Hara K, Matsushima T, Sugimura T, Bryan GT (1974) Relationships between the Carcinogenic and Mutagenic or DNA-modifying Effects of Nitrofuran Derivatives, Including 2-(2-Furyl)-3-(5-nitro-2-furyl) acrylamide, a Food Additive. Cancer Research 34:2266–2273

    CAS  PubMed  Google Scholar 

  • Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, Bishop JM (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci U S A 99:9942–9947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao S, Bechhofer DH (2010) Initiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y. J Bacteriol 192:3279–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom JH, Go H, Shin E, Kim HL, Han SH, Moore CJ, Bae J, Lee K (2008) Inhibitory effects of RraA and RraB on RNAse E-related enzymes imply conserved functions in the regulated enzymatic cleavage of RNA. FEMS Microbiol Lett 285:10–15

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Zeng C, Liu H, Chen X, Zhang P, Yun BS, Jin G, Zhou A (2013) Lack of RNase L attenuates macrophage functions. PLoS One 8:e81269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaniewski R, Deutscher MP (1982) Genetic mapping of mutation in Escherichia coli leading to a temperature-sensitive RNase D. Mol Gen Genet 185:142–147

    Article  CAS  PubMed  Google Scholar 

  • Zhang JR, Deutscher MP (1988a) Transfer RNA is a substrate for RNase D in vivo. J Biol Chem 263:17909–17912

    CAS  PubMed  Google Scholar 

  • Zhang JR, Deutscher MP (1988b) Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D. J Bacteriol 170:522–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Calin-Jageman I, Gurnon JR, Choi TJ, Adams B, Nicholson AW, Van Etten JL (2003) Characterization of a chlorella virus PBCV-1 encoded ribonuclease III. Virology 317:73–83

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Zhou L, Kawarasaki Y, Georgiou G (2006) Regulation of RraA, a protein inhibitor of RNase E-mediated RNA decay. J Bacteriol 188:3257–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Deutscher MP (1997) An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J Bacteriol 179:4391–4395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Y, Wang Y, Malhotra A (2005) Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 13:973–984

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Zheng H, Wang Y, Chruszcz M, Cymborowski M, Skarina T, Savchenko A, Malhotra A, Minor W (2007) Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. Structure 15:417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás G. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villa, T.G., Feijoo-Siota, L., Rama, J.L.R., Sánchez-Pérez, A., de Miguel-Bouzas, T. (2016). Control of Bacterial Growth Through RNA Degradation. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_3

Download citation

Publish with us

Policies and ethics