Skip to main content

Therapeutic Potential of Antimicrobial Peptides

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth

Abstract

The emergence of pathogens which are resistant or multi-drug resistant to most of the currently available antibiotics is posing an immense burden to the healthcare systems throughout the world. The development of new classes of antibiotics has also suffered a decline since many pharmaceutical companies have gradually abandoned the field. Fortunately, several public–private initiatives to spur the development of new antibiotics have been recently launched. Antimicrobial peptides are thus attracting a renewed interest as potential therapeutic antibiotic candidates. In fact, some of the oldest available antibiotics in the market are cyclic antimicrobial peptides, such as polymyxin B, colistin, gramicidin or bacitracin. However, pharmacological and toxicological problems associated with the systemic use of antimicrobial peptides are slowing their development and drug approval. An overview of the advantages and drawbacks of antimicrobial peptides as antibiotic drugs and a report of compounds that are in development are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenium Biotech (2016). Accessed 25 Feb 2016 http://adeniumbiotech.com/arencin

  • Afacan NJ, Yeung ATY, Pena OM et al (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18:807–819

    Article  CAS  PubMed  Google Scholar 

  • Bocchinfuso G, Bobone S, Mazzuca C et al (2011) Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cell Mol Life Sci 68:2281–2301

    Article  CAS  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, DlK Benjamin Jr et al (2013) Infectious diseases society of America. 10x‘20 progress—development of new drugs active against Gram-negative bacilli: an update from the infectious diseases society of America. Clin Infect Dis 56:1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2:587–593

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brotz H, Sahl HG (2000) New insights into the mechanism of action of lantibiotics—diverse biological effects by binding to the same molecular target. J Antimicrob Chemother 46:1–6

    Article  CAS  PubMed  Google Scholar 

  • Brotz H, Bierbaum G, Leopold K et al (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot 66:571–591

    Article  CAS  PubMed  Google Scholar 

  • Cajal Y, Jain MK (1997) Synergism between mellitin and phospholipase A2 from bee venom: apparent activation by intervesicle exchange of phospholipids. Biochemistry 36:3882–3893

    Article  CAS  PubMed  Google Scholar 

  • Cajal Y, Rogers J, Berg O et al (1996a) Intermembrane molecular contacts by polymyxin B mediate exchange of phospholipids. Biochemistry 35:299–308

    Article  CAS  PubMed  Google Scholar 

  • Cajal Y, Ghanta J, Easwaran K et al (1996b) Specificity for the exchange of phospholipids through polymyxin B mediated intermembrane molecular contacts. Biochemistry 35:5684–5695

    Article  CAS  PubMed  Google Scholar 

  • Cantab Anti-infectives (2015). Accessed 25 Feb 2016 http://www.cantabanti.com/science.html

  • CDC (2014) Antibiotic resistant threats in the US 2013. Centre for disease control and prevention, Atlanta. Accessed 25 Feb 2016 http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

  • Cellceutix (2016). Accessed 25 Feb 2016 http://cellceutix.com/brilacidin/#sthash.EZs7vOZy.dpbs

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Clausell A, Rabanal F, Garcia-Subirats M et al (2006) Membrane association and contact formation by a synthetic analog of polymyxin B and its fluorescent derivatives. J Phys Chem B 110:4465–4471

    Article  CAS  PubMed  Google Scholar 

  • Clausell A, Rabanal F, Garcia-Subirats M et al (2007) Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B 111:551–556

    Article  CAS  PubMed  Google Scholar 

  • Cubicin webpage (2014). Accessed 20 Mar 2015 http://cubicin.com/

  • Cutanea Life Sciences (2012). Accessed 25 Feb 2016 http://www.cutanealife.com/antimicrobial-peptides.html

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dipexium Pharmaceuticals (2016). Accessed 25 Feb 2016 http://www.dipexiumpharmaceuticals.com/locilex/overview

  • Domingues TM, Mattei B, Seelig J et al (2013) Interaction of the antimicrobial peptide gomes in with model membranes: a calorimetric study. Langmuir 29:8609–8618

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Rotem S, Mor A et al (2008) Bacterial membranes as predictors of antimicrobial potency. J Am Chem Soc 130:14346–14352

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    Article  CAS  PubMed  Google Scholar 

  • Finlay BB, Hancock REW (2004) Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol 2:497–504

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, His JA, Hancock REW et al (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    CAS  Google Scholar 

  • Fosgerau K, Hoffman T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotech 31:379–382

    Article  CAS  Google Scholar 

  • Giacometti A, Cirioni O, Barchiesi F et al (1999) In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against pseudomonas aeruginosa. J Antimicrob Chemother 44:641–645

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DN, Guidos RJ, Boucher HW et al (2010) The 10x‘20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50:1081–1083

    Article  Google Scholar 

  • Goodwin D, Simerska P, Toth I (2012) Peptides as therapeutics with enhanced bioactivity. Curr Med Chem 19:4451–4461

    Article  CAS  PubMed  Google Scholar 

  • Grau-Campistany A,  Manresa A, Pujol M, Rabanal F, Cajal Y (2016) Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria. Biochim Biophys Acta-Biomembranes 1858:333–343

    Google Scholar 

  • Grau-Campistany A, Pujol M, Marqués, AM, Manresa A, Rabanal F, Cajal  Y (2015) Membrane interaction of a new synthetic antimicrobial lipopeptide sp-85 with broad spectrum activity. Colloids and Surfaces A: Physicochem Eng Aspects 480:307–317

    Google Scholar 

  • Hale JD, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  CAS  PubMed  Google Scholar 

  • Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the Magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84:3052–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW (1997) Peptide antibiotics. Lancet 349:418–4122

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defences. Proc Natl Acad Sci USA 97:8856–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herper M (2013) How much does pharmaceutical innovation cost? A look at 100 companies. Accessed 25 Feb 2016 http://www.forbes.com/sites/matthewherper/2013/08/11/the-cost-of-inventing-a-new-drug-98-companies-ranked/

  • Hurdle JG, O’Neill AJ, Chopra I et al (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joint Programming Initiative on Antimicrobial Resistance (2015). Accessed 28 Mar 2015 http://www.jpiamr.eu/

  • Jung D, Powers JP, Straus SK et al (2008) Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes. Chem Phys Lipids 154:120–128

    Article  CAS  PubMed  Google Scholar 

  • Karolinska Development (2013). Accessed 25 Feb 2016 http://www.karolinskadevelopment.com/en/portfolio/infections-and-wound-healing/ll-37/

  • Klevens RM, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcous aureus infection in the United States. JAMA 298:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Knight-Connoni V, Carmela Mascio C, Chesnel L, Silverman J (2016) Discovery and development of surotomycin for the treatment of Clostridium difficile. J Ind Microbiol Biotechnol 43:195–204

    Google Scholar 

  • Lan Y, Ye Y, Kozlowska J et al (2010) Structural contributions to the intracellular targeting strategies of antimicrobial peptides. Biochim Biophys Acta 1798:1934–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laverty G, Gorman SP, Gilmor BF (2011) The potential of antimicrobial peptides as biocides. Int J Mol Sci 12:6566–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lytix Biopharma (2016). Accessed 25 Feb 2016 http://www.lytixbiopharma.com/antibacterials/ltx109/

  • Magee TV, Brown MF, Starr JT et al (2013) Discovery of dap-3 polymyxin analogues for the treatment of multidrug-resistant Gram-negative nosocomial infections. J Med Chem 56:5079–5093

    Article  CAS  PubMed  Google Scholar 

  • Marchand C, Krajewski K, Lee HF et al (2006) Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res 34:5157–5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  • Novabiotics (2014). Accessed 25 Feb 2016 http://www.novabiotics.co.uk/pipeline/np213-novexatin

  • Novactabio (2014). Accessed 25 Feb 2016 http://www.novactabio.com/careers.php

  • Oh JT, Van Dyk TK, Cajal Y et al (1998a) Osmotic stress in viable Escherichia coli as the basis for the antibiotic response to polymyxin B. Biochem Biophys Res Commun 246:619–623

    Article  CAS  PubMed  Google Scholar 

  • Oh JT, Cajal Y, Dhurjati PS et al (1998b) Cecropins induce the hyperosmotic stress response in Escherichia coli. Biochim Biophys Acta 1415:235–245

    Article  CAS  PubMed  Google Scholar 

  • Oh JT, Cajal Y, Skowronska EM et al (2000) Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli. Biochim Biophys Acta 1463:43–54

    Article  CAS  PubMed  Google Scholar 

  • Oragenics (2016). Accessed 25 Feb 2016 http://www.oragenics.com/lantibiotics/mu1140

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171

    Article  CAS  PubMed  Google Scholar 

  • Pergamum AB (2016). Accessed 25 Feb 2016 http://www.pergamum.com/programs/

  • Polyphor (2015). Accessed 25 Feb 2016 http://www.polyphor.com/products/pol7080

  • Rabanal F, Grau-Campistany A, Vila-Farrés X et al (2015). A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Scientific Reports 5:10558

    Google Scholar 

  • Rex JH (2014) ND4BB: addressing the antimicrobial resistance crisis. Nat Rev Microbiol 12:231–232

    Article  CAS  Google Scholar 

  • Rokitskaya TI, Kolodkin NI, Kotova EA et al (2011) Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochim Biophys Acta 1808:91–97

    Article  CAS  PubMed  Google Scholar 

  • Saberwal G, Nagaraj R (1994) Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta 1197:109–131

    Article  CAS  PubMed  Google Scholar 

  • Sawyer JG, Martin NL, Hancock REW (1988) Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun 56:693–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soligenix (2016). Accessed 25 Feb 2016 http://www.soligenix.com/pipeline/biotherapeutics

  • Spaar A, Munster C, Salditt T (2004) Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys J 87:396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas NP, Jetter P, Ueberbacher BJ et al (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Stevenson CL (2009) Advances in peptide pharmaceuticals. Curr Pharm Biotech 10:122–1237

    Article  CAS  Google Scholar 

  • Straus SK, Hancock REW (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 1758:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xia Y, Li D et al (2014) Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides. Biochim Biophys Acta 1838:2985–2993

    Article  CAS  PubMed  Google Scholar 

  • The Pew Charitable Trusts (2015) Antibiotics Currently in Clinical Development. Accessed 25 Feb 2016. http://www.pewtrusts.org/en/multimedia/data-visualizations/2014/antibiotics-currently-in-clinical-development

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80:717–735

    Article  CAS  PubMed  Google Scholar 

  • Tufts Center for the Study of Drug Development (2014). Accessed 25 Mar 2014 http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study

  • Uhlig T, Kyprianou T, Martinelli FG et al (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. Eur Proteomics Assoc (EuPA) 4:58–69

    CAS  Google Scholar 

  • Vaara M (2013) Novel derivatives of polymyxins. J Antimicrob Chemother 68:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Van Epps HL (2006) René Dubos: unearthing antibiotics. J Exp Med 203:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Velkov T, Thompson PE, Nation RL et al (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velkov T, Roberts KD, Nation RL et al (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting Gram-negative ‘superbugs’. ACS Chem Biol 9:1172–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viñas M, Rabanal F, Benz R et al (2014) Perspectives in the research of antimicrobial peptides. In: Veiga-Crespo P, Villa TG (eds) Antimicrobial compounds: current strategies and new alternatives, 1st edn. Springer, Berlin, pp 269–284

    Chapter  Google Scholar 

  • Wade D, Boman A, Wahlin B et al (1990) All-d amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87:4761–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh CT, Wencewicz TA (2014) Prospects for new antibiotics: a molecule-centered perspective. J Antibiot 67:7–22

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance 2014. World Health Organization. Accessed 25 Mar 2015 http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf

  • Yang L, Harroun TA, Weiss TM et al (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Yeaman MR (2012) Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 52:337–360

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Qin W, Lin J et al (2015) Antibacterial mechanisms of polymyxin and bacterial resistance. BioMed Res Int 2015:1–12

    Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu C-MJ, Huang C (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Mattila JP, Holopainen JM et al (2001) Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys J 81:2979–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the support of Generalitat de Catalunya (VAL-TEC 08-1-0016, ACC10), MICINN-MINECO (CTQ2008-06200), Fundació Bosch i Gimpera (UB) and Xarxa de Referència en Biotecnologia (XRB). The authors (FR and YC) are members of the ENABLE (European Gram-Negative Antibacterial Engine) European consortium (IMI-ND4BB, http://www.imi.europa.eu/content/enable).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Rabanal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rabanal, F., Cajal, Y. (2016). Therapeutic Potential of Antimicrobial Peptides. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_16

Download citation

Publish with us

Policies and ethics