Skip to main content

Physical Properties of Silicene

  • Chapter
  • First Online:
Silicene

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 235))

Abstract

In this chapter, we discuss the physical properties of free-standing silicene . Silicene is a single atomic layer of silicon much like graphene. The interest in silicene is exactly the same as that for graphene, in being two-dimensional and possessing a Dirac cone . One advantage relies on its possible application in electronics, whereby its natural compatibility with the current Si technology might make fabrication much more of a commercial reality. Since free-standing has not yet been made, all of the results are theoretical in nature, though most properties are not expected to differ significantly for silicene on a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B (Condens. Matter Mater. Phys.) 76(7), 075131 (2007). doi:10.1103/PhysRevB.76.075131. URL http://link.aps.org/abstract/PRB/v76/e075131

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)

    Article  Google Scholar 

  3. K. Takeda, K. Shiraishi, Phys. Rev. B 39(15), 11028 (1989). doi:10.1103/PhysRevB.39.11028

    Article  Google Scholar 

  4. K. Takeda, K. Shiraishi, Phys. Rev. B 50(20), 14916 (1994). doi:10.1103/PhysRevB.50.14916

    Article  Google Scholar 

  5. Y. Wang, K. Scheerschmidt, U. Gösele, Phys. Rev. B 61, 12864 (2000). doi:10.1103/PhysRevB.61.12864. URL http://link.aps.org/doi/10.1103/PhysRevB.61.12864

    Google Scholar 

  6. X. Yang, J. Ni, Phys. Rev. B 72(19), 195426 (2005). doi:10.1103/PhysRevB.72.195426

    Article  Google Scholar 

  7. E. Durgun, S. Tongay, S. Ciraci, Phys. Rev. B 72(7), 075420 (2005)

    Article  Google Scholar 

  8. H. Nakano, M. Ishii, H. Nakamura, Chem. Commun. 2945–2947 (2005). doi:10.1039/B500758E. URL http://dx.doi.org/10.1039/B500758E

  9. H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, H. Nakamura, Angew. Chem. 118(38), 6451 (2006)

    Article  Google Scholar 

  10. A. Kara, C. Léandri, M.E. Dávila, P. de Padova, B. Ealet, H. Oughaddou, B. Aufray, G.L. Lay, J. Supercond. Novel Magn. 22, 259 (2009)

    Article  Google Scholar 

  11. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Adv. Mat. 24, 5088 (2012)

    Article  Google Scholar 

  12. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 12(7), 3507 (2012). doi:10.1021/nl301047g. URL http://pubs.acs.org/doi/abs/10.1021/nl301047g

    Google Scholar 

  13. H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.Y. Hoarau, B. Aufray, J.P. Bibérian, J. Phys. Condensed Mat. 24(17), 172001 (2012)

    Article  Google Scholar 

  14. C.L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5, 045802 (2012)

    Article  Google Scholar 

  15. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012). Doi:10.1103/PhysRevLett.108.155501. URL http://link.aps.org/doi/10.1103/PhysRevLett.108.155501

  16. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nano. 10, 227 (2015)

    Article  Google Scholar 

  17. J.R. Soto, B. Molina, J.J. Castro, Phys. Chem. Chem. Phys. 17, 7624 (2015). doi:10.1039/C4CP05912C. URL http://dx.doi.org/10.1039/C4CP05912C

    Google Scholar 

  18. Y. Ding, J. Ni, Appl. Phys. Lett. 95(8), 083115 (2009)

    Article  Google Scholar 

  19. S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102(23), 236804 (2009)

    Article  Google Scholar 

  20. L.C. Lew Yan Voon, E. Sandberg, R.S. Aga, A.A. Farajian, Appl. Phys. Lett. 97, 163114 (2010)

    Google Scholar 

  21. D. Kaltsas, L. Tsetseris, Phys. Chem. Chem. Phys. 15(24), 9710 (2013). doi:10.1039/C3CP50944C. URL http://dx.doi.org/10.1039/C3CP50944C

    Google Scholar 

  22. M.T. Yin, M.L. Cohen, Phys. Rev. B 29, 6996 (1984). doi:10.1103/PhysRevB.29.6996. URL http://link.aps.org/doi/10.1103/PhysRevB.29.6996

    Google Scholar 

  23. S. Lebègue, O. Eriksson, Phys. Rev. B (Condens. Matter Mater. Phys.) 79(11), 115409 (2009). doi:10.1103/PhysRevB.79.115409. URL http://link.aps.org/abstract/PRB/v79/e115409

  24. T. Suzuki, Y. Yokomizo, Physica E 42, 2820 (2010)

    Article  Google Scholar 

  25. R. Hoffmann, Angewandte Chemie International Edition 52(1), 93 (2013). doi:10.1002/anie.201206678. URL http://dx.doi.org/10.1002/anie.201206678

    Google Scholar 

  26. T. Morishita, K. Nishio, M. Mikami, Phys. Rev. B 77(8), 081401 (2008). doi:10.1103/PhysRevB.77.081401

  27. G. Liu, M.S. Wu, C.Y. Ouyang, B. Xu, EPL (Europhys. Lett.) 99(1), 17010 (2012). URL http://stacks.iop.org/0295-5075/99/i=1/a=17010

    Google Scholar 

  28. T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, J. App. Phys. 113, 104305 (2013)

    Article  Google Scholar 

  29. B. Wang, J. Wu, X. Gu, H. Yin, Y. Wei, R. Yang, M. Dresselhaus, Appl. Phys. Lett. 104(8), 081902 (2014). Doi:http://dx.doi.org/10.1063/1.4866415. URL http://scitation.aip.org/content/aip/journal/apl/104/8/10.1063/1.4866415

    Google Scholar 

  30. C. Yang, Z. Yu, P. Lu, Y. Liu, H. Ye, T. Gao, Phonon instability and ideal strength of silicene under tension. Comput. Mater. Sci. 95(0), 420 (2014). doi:http://dx.doi.org/10.1016/j.commatsci.2014.07.046. URL http://www.sciencedirect.com/science/article/pii/S0927025614005291

    Google Scholar 

  31. R. Qin, C.H. Wang, W. Zhu, Y. Zhang, AIP Adv. 2(2), 022159 (2012)

    Article  Google Scholar 

  32. V. Bocchetti, H.T. Diep, H. Enriquez, H. Oughaddou, A. Kara, J. Phys. Conf. Ser. 491(1), 012008 (2014). URL http://stacks.iop.org/1742-6596/491/i=1/a=012008

  33. Y. Zhang, R. Tsu, Nanoscale Res. Lett. 5, 805 (2010)

    Article  Google Scholar 

  34. H.S. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80(15), 155453 (2009). doi:10.1103/PhysRevB.80.155453

    Article  Google Scholar 

  35. H. Zhao, Phys. Lett. A 376(46), 3546 (2012). Doi:10.1016/j.physleta.2012.10.024. URL http://www.sciencedirect.com/science/article/pii/S0375960112010523

    Google Scholar 

  36. R.E. Roman, S.W. Cranford, Comput. Mater. Sci. 82(0), 50 (2014). Doi:http://dx.doi.org/10.1016/j.commatsci.2013.09.030. URL http://www.sciencedirect.com/science/article/pii/S092702561300565X

    Google Scholar 

  37. Z.G. Shao, X.S. Ye, L. Yang, C.L. Wang, J. Appl. Phys. 114(9), 093712 (2013)

    Article  Google Scholar 

  38. Q. Lu, M. Arroyo, R. Huang, J. Phys. D Appl. Phys. 42(10), 102002 (2009). URL http://stacks.iop.org/0022-3727/42/i=10/a=102002

  39. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/PhysRevLett.97.187401. URL http://link.aps.org/abstract/PRL/v97/e187401

  40. R. Yan, Q. Zhang, W. Li, I. Calizo, T. Shen, C.A. Richter, A.R. Hight-Walker, X. Liang, A. Seabaugh, D. Jena, H. Grace Xing, D.J. Gundlach, N.V. Nguyen, Applied Physics Letters 101(2), 022105 (2012). doi:http://dx.doi.org/10.1063/1.4734955. URL http://scitation.aip.org/content/aip/journal/apl/101/2/10.1063/1.4734955

    Google Scholar 

  41. H. Xie, M. Hu, H. Bao, Appl. Phys. Lett. 104(13), 131906 (2014). doi:http://dx.doi.org/10.1063/1.4870586. URL http://scitation.aip.org/content/aip/journal/apl/104/13/10.1063/1.4870586

    Google Scholar 

  42. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8(3), 902 (2008)

    Article  Google Scholar 

  43. Y. Yan, H. Wu, F. Jiang, H. Zhao, Eur. Phys. J. B 86(11), 1 (2013). doi:10.1140/epjb/e2013-40818-3. URL http://dx.doi.org/10.1140/epjb/e2013-40818-3

  44. A.N. Sidorov, A. Sherehiy, R. Jayasinghe, R. Stallard, D.K. Benjamin, Q. Yu, Z. Liu, W. Wu, H. Cao, Y.P. Chen, Z. Jiang, G.U. Sumanasekera, Appl. Phys. Lett. 99(1), 013115 (2011). doi:http://dx.doi.org/10.1063/1.3609858. URL http://scitation.aip.org/content/aip/journal/apl/99/1/10.1063/1.3609858

    Google Scholar 

  45. K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, R. D’Agosta, Phys. Rev. B 89, 125403 (2014). Doi:10.1103/PhysRevB.89.125403. URL http://link.aps.org/doi/10.1103/PhysRevB.89.125403

  46. R. Verma, S. Bhattacharya, S. Mahapatra, IEEE Trans. Electr. Dev. 60(6), 2064 (2013). doi:10.1109/TED.2013.2258159

    Article  Google Scholar 

  47. Q. Peng, X. Wen, S. De, RSC Adv. 3, 13772 (2013). doi:10.1039/C3RA41347K. URL http://dx.doi.org/10.1039/C3RA41347K

    Google Scholar 

  48. N.Y. Dzade, K.O. Obodo, S.K. Adjokatse, A.C. Ashu, E. Amankwah, C.D. Atiso, A.A. Bello, E. Igumbor, S.B. Nzabarinda, J.T. Obodo, A.O. Ogbuu, O.E. Femi, J.O. Udeigwe, U.V. Waghmare, J. Phys. Condens. Matter 22, 375502 (2010)

    Google Scholar 

  49. R. Qin, W. Zhu, Y. Zhang, X. Deng, Nano. Res. Lett. 9(1), 521 (2014)

    Article  Google Scholar 

  50. R. Ansari, S. Rouhi, S. Ajori, Superlattices Microstruct. 65(0), 64 (2014). doi:http://dx.doi.org/10.1016/j.spmi.2013.10.039. URL http://www.sciencedirect.com/science/article/pii/S0749603613003765

    Google Scholar 

  51. Q.X. Pei, Z.D. Sha, Y.Y. Zhang, Y.W. Zhang, J. Appl. Phys. 115(2), 023519 (2014). doi:http://dx.doi.org/10.1063/1.4861736. URL http://scitation.aip.org/content/aip/journal/jap/115/2/10.1063/1.4861736

    Google Scholar 

  52. S. Wang, L. Zhu, Q. Chen, J. Wang, F. Ding, J. Appl. Phys. 109(5), 053516 (2011)

    Article  Google Scholar 

  53. M. Houssa, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 96, 082111 (2010)

    Google Scholar 

  54. M. Houssa, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 97, 112106 (2010)

    Google Scholar 

  55. M. Houssa, G. Pourtois, M.M. Heyns, V.V. Afanas’ev, A. Stesmans, J. Electrochem. Soc. 158(2), H107 (2011)

    Article  Google Scholar 

  56. S. Wang, J. Phys. Soc. Jpn. 79, 064602 (2010)

    Article  Google Scholar 

  57. R. Arafune, C.L. Lin, R. Nagao, M. Kawai, N. Takagi, Phys. Rev. Lett. 110, 229701 (2013). doi:10.1103/PhysRevLett.110.229701. URL http://link.aps.org/doi/10.1103/PhysRevLett.110.229701

  58. P. Gori, O. Pulci, F. Ronci, S. Colonna, F. Bechsted, J. Appl. Phys. 114(11), 113710 (2013)

    Article  Google Scholar 

  59. C.L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi, Phys. Rev. Lett. 110, 076801 (2013). doi:10.1103/PhysRevLett.110.076801. URL http://link.aps.org/doi/10.1103/PhysRevLett.110.076801

  60. D. Tsoutsou, E. Xenogiannopoulou, E. Golias, P. Tsipas, A. Dimoulas, Appl. Phys. Lett. 103(23), 231604 (2013). doi:http://dx.doi.org/10.1063/1.4841335. URL http://scitation.aip.org/content/aip/journal/apl/103/23/10.1063/1.4841335

    Google Scholar 

  61. M.X. Chen, M. Weinert, Nano Lett. doi:10.1021/nl502107v. URL http://pubs.acs.org/doi/abs/10.1021/nl502107v

    Google Scholar 

  62. N.W. Johnson, P. Vogt, A. Resta, P. De Padova, I. Perez, D. Muir, E.Z. Kurmaev, G. Le Lay, A. Moewes, Adv. Funct. Mater. 24(33), 5253 (2014). doi:10.1002/adfm.201400769. URL http://dx.doi.org/10.1002/adfm.201400769

    Google Scholar 

  63. S.K. Mahatha, P. Moras, V. Bellini, P.M. Sheverdyaeva, C. Struzzi, L. Petaccia, C. Carbone, Phys. Rev. B 89, 201416 (2014). DOI 10.1103/PhysRevB.89.201416. URL http://link.aps.org/doi/10.1103/PhysRevB.89.201416

  64. E. Scalise, E. Cinquanta, M. Houssa, B. van den Broek, D. Chiappe, C. Grazianetti, G. Pourtois, B. Ealet, A. Molle, M. Fanciulli, V. Afanas ev, A. Stesmans, Appl. Surf. Sci. 291(1), 113 (2013). doi:http://dx.doi.org/10.1016/j.apsusc.2013.08.113. URL http://www.sciencedirect.com/science/article/pii/S0169433213016048

    Google Scholar 

  65. H. Ishida, Y. Hamamoto, Y. Morikawa, E. Minamitani, R. Arafune, N. Takagi, New J. Phys. 17(1), 015013 (2015). URL http://stacks.iop.org/1367-2630/17/i=1/a=015013

    Google Scholar 

  66. L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012). doi:10.1103/PhysRevLett.109.056804. URL http://link.aps.org/doi/10.1103/PhysRevLett.109.056804

  67. B. Feng, H. Li, C.C. Liu, T.N. Shao, P. Cheng, Y. Yao, S. Meng, L. Chen, K. Wu, ACS Nano 7(10), 9049 (2013). doi:10.1021/nn403661h. URL http://pubs.acs.org/doi/abs/10.1021/nn403661h

    Google Scholar 

  68. C.C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011). doi:10.1103/PhysRevLett.107.076802. URL http://link.aps.org/doi/10.1103/PhysRevLett.107.076802

  69. F. Geissler, J.C. Budich, B. Trauzettel, New J. Phys. 15(8), 085030 (2013). URL http://stacks.iop.org/1367-2630/15/i=8/a=085030

    Google Scholar 

  70. L.C.L.Y. Voon, A. Lopez-Bezanilla, J. Wang, Y. Zhang, M. Willatzen, New J. Phys. 17(2), 025004 (2015). URL http://stacks.iop.org/1367-2630/17/i=2/a=025004

    Google Scholar 

  71. R. Winkler, U. Zülicke, Phys. Rev. B 82, 245313 (2010). doi:10.1103/PhysRevB.82.245313. URL http://link.aps.org/doi/10.1103/PhysRevB.82.245313

  72. M. Ezawa, Phys. Rev. B 87, 155415 (2013). doi:10.1103/PhysRevB.87.155415. URL http://link.aps.org/doi/10.1103/PhysRevB.87.155415

  73. Y. Wang, Y. Ding, Solid State Commun. 155(2), 6 (2013)

    Google Scholar 

  74. A. Durajski, D. Szczes’niak, R. Szczes’niak, Solid State Commun. 200, 17 (2014). doi:http://dx.doi.org/10.1016/j.ssc.2014.09.007. URL http://www.sciencedirect.com/science/article/pii/S0038109814003664

    Google Scholar 

  75. B. Mohan, A. Kumar, P. Ahluwalia, Physica E: Low-dimensional systems and nanostructures 61(0), 40 (2014). doi:http://dx.doi.org/10.1016/j.physe.2014.03.013. URL http://www.sciencedirect.com/science/article/pii/S1386947714001003

    Google Scholar 

  76. C.H. Yang, Z.Y. Yu, P.F. Lu, Y.m. Liu, S. Manzoor, M. Li, S. Zhou, Proc. SPIE 8975, 89750K (2014). doi:10.1117/12.2038401. URL http://dx.doi.org/10.1117/12.2038401

  77. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 12(1), 113 (2012). doi:10.1021/nl203065e. URL http://pubs.acs.org/doi/abs/10.1021/nl203065e

    Google Scholar 

  78. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012). doi:10.1103/PhysRevB.85.075423. URL http://link.aps.org/doi/10.1103/PhysRevB.85.075423

  79. V. Vargiamidis, P. Vasilopoulos, G.Q. Hai, J. Phys. Condens. Matter 26(34), 345303 (2014). URL http://stacks.iop.org/0953-8984/26/i=34/a=345303

    Google Scholar 

  80. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005). doi:10.1103/PhysRevLett.95.226801. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.226801

  81. M. Ezawa, Eur. J. Phys. B 85(11), 1 (2012)

    Article  Google Scholar 

  82. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005). doi:10.1103/PhysRevLett.95.146802. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.146802

  83. M. Tahir, U. Schwingenschlogl, Sci. Rep. 3(1075), 1 (2013)

    Google Scholar 

  84. M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschogl, Appl. Phys. Lett. 102(16), 162412 (2013)

    Article  Google Scholar 

  85. M. Ezawa, New J. Phys. 14(3), 033003 (2012). URL http://stacks.iop.org/1367-2630/14/i=3/a=033003

    Google Scholar 

  86. M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013). doi:10.1103/PhysRevLett.110.026603. URL http://link.aps.org/doi/10.1103/PhysRevLett.110.026603

  87. M. Ezawa, JPS Conf. Proc. 1(1), 012003 (2014)

    Google Scholar 

  88. Y. Kim, K. Choi, J. Ihm, H. Jin, Phys. Rev. B 89, 085429 (2014). doi:10.1103/PhysRevB.89.085429. URL http://link.aps.org/doi/10.1103/PhysRevB.89.085429

  89. S.K. Wang, J. Wang, K.S. Chan, New J. Phys. 16(4), 045015 (2014). URL http://stacks.iop.org/1367-2630/16/i=4/a=045015

    Google Scholar 

  90. D.Q. Fang, S.L. Zhang, H. Xu, RSC Adv. 3, 24075 (2013). doi:10.1039/C3RA42720J. URL http://dx.doi.org/10.1039/C3RA42720J

    Google Scholar 

  91. H.X. Luan, C.W. Zhang, F.B. Zheng, P.J. Wang, J. Phys. Chem. C. doi:10.1021/jp4005357. URL http://pubs.acs.org/doi/abs/10.1021/jp4005357

    Google Scholar 

  92. L. Ma, J.M. Zhang, K.W. Xu, V. Ji, Phys. B 425, 66 (2013)

    Article  Google Scholar 

  93. F. Zheng, C. Zhang, P. Wang, S. Li, J. Appl. Phys. 113(15), 154302 (2013)

    Google Scholar 

  94. F. Zheng, C. Zhang, S. Yan, F. Li, J. Mater. Chem. C 1, 2735 (2013). doi:10.1039/C3TC30097H. URL http://dx.doi.org/10.1039/C3TC30097H

    Google Scholar 

  95. A.B. Chen, X.F. Wang, P. Vasilopoulos, M.X. Zhai, Y.S. Liu, Phys. Chem. Chem. Phys. 16, 5113 (2014). doi:10.1039/C3CP55447C. URL http://dx.doi.org/10.1039/C3CP55447C

    Google Scholar 

  96. J. Chen, X.F. Wang, P. Vasilopoulos, A.B. Chen, J.C. Wu, ChemPhysChem 15(13), 2701 (2014). doi:10.1002/cphc.201402171. URL http://dx.doi.org/10.1002/cphc.201402171

    Google Scholar 

  97. Y.J. Dong, X.F. Wang, P. Vasilopoulos, M.X. Zhai, X.M. Wu, J. Phys. D Appl. Phys. 47(10), 105304 (2014). URL http://stacks.iop.org/0022-3727/47/i=10/a=105304

  98. Y. Liu, X. Yang, X. Zhang, X. Hong, X.F. Wang, J. Feng, C. Zhang, RSC Adv. (2014). doi:10.1039/C4RA07791A. URL http://dx.doi.org/10.1039/C4RA07791A

    Google Scholar 

  99. A. Lopez-Bezanilla, J. Phys. Chem. C 118(32), 18788 (2014). doi:10.1021/jp5060809. URL http://dx.doi.org/10.1021/jp5060809

    Google Scholar 

  100. L. Ma, J.M. Zhang, K.W. Xu, V. Ji, Phys. E Low-Dimension. Syst. Nanostruct. 60(0), 112 (2014). doi:http://dx.doi.org/10.1016/j.physe.2014.02.013. URL http://www.sciencedirect.com/science/article/pii/S1386947714000642

    Google Scholar 

  101. J.M. Zhang, W.T. Song, K.W. Xu, V. Ji, Comput. Mater. Sci. 95(0), 429 (2014). doi:http://dx.doi.org/10.1016/j.commatsci.2014.08.019. URL http://www.sciencedirect.com/science/article/pii/S0927025614005618

    Google Scholar 

  102. X. Pi, Z. Ni, Y. Liu, Z. Ruan, M. Xu, D. Yang, Phys. Chem. Chem. Phys. 17, 4146 (2015). doi:10.1039/C4CP05196C. URL http://dx.doi.org/10.1039/C4CP05196C

    Google Scholar 

  103. X. Tan, F. Li, Z. Chen, J. Phys. Chem. C 118(45), 25825 (2014). doi:10.1021/jp507011p. URL http://dx.doi.org/10.1021/jp507011p

    Google Scholar 

  104. A. Manjanath, V. Kumar, A.K. Singh, Phys. Chem. Chem. Phys. 16, 1667 (2014). doi:10.1039/C3CP54655A. URL http://dx.doi.org/10.1039/C3CP54655A

    Google Scholar 

  105. Y.C. Cheng, Z.Y. Zhu, U. Schwingenschlögl, Europhys. Lett. 95, 17005 (2011)

    Article  Google Scholar 

  106. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320(5881), 1308 (2008)

    Article  Google Scholar 

  107. F. Bechstedt, L. Matthes, P. Gori, O. Pulci, Appl. Phys. Lett. 100, 261906 (2012)

    Article  Google Scholar 

  108. L. Matthes, P. Gori, O. Pulci, F. Bechstedt, Phys. Rev. B 87, 035438 (2013). doi:10.1103/PhysRevB.87.035438. URL http://link.aps.org/doi/10.1103/PhysRevB.87.035438

  109. L. Matthes, O. Pulci, F. Bechstedt, J. Phys. Cond. Matter 25, 395305 (2013)

    Article  Google Scholar 

  110. L. Matthes, O. Pulci, F. Bechstedt, New J. Phys. 16(10), 105007 (2014). URL http://stacks.iop.org/1367-2630/16/i=10/a=105007

    Google Scholar 

  111. H. Bao, J. Guo, W. Liao, H. Zhao, Appl. Phys. A, 1–5 (2014). doi:10.1007/s00339-014-8837-x. URL http://dx.doi.org/10.1007/s00339-014-8837-x

    Google Scholar 

  112. B. Mohan, A. Kumar, P. Ahluwalia, Phys. E: Low-Dimension. Syst. Nanostruct. 53, 233 (2013). doi:10.1016/j.physe.2013.05.014. URL http://www.sciencedirect.com/science/article/pii/S1386947713001872

    Google Scholar 

  113. C.J. Tabert, E.J. Nicol, Phys. Rev. B 89, 195410 (2014). doi:10.1103/PhysRevB.89.195410. URL http://link.aps.org/doi/10.1103/PhysRevB.89.195410

  114. H.R. Chang, J. Zhou, H. Zhang, Y. Yao, Phys. Rev. B 89, 201411 (2014). doi:10.1103/PhysRevB.89.201411. URL http://link.aps.org/doi/10.1103/PhysRevB.89.201411

  115. J.Y. Wu, S.C. Chen, M.F. Lin, New J. Phys. 16(12), 125002 (2014). URL http://stacks.iop.org/1367-2630/16/i=12/a=125002

    Google Scholar 

  116. R. Das, S. Chowdhury, A. Majumdar, D. Jana, RSC Adv. 5, 41 (2015). doi:10.1039/C4RA07976K. URL http://dx.doi.org/10.1039/C4RA07976K

    Google Scholar 

  117. Y. Yao, S.Y. Liu, X.L. Lei, Phys. Rev. B 91, 115411 (2015). doi:10.1103/PhysRevB.91.115411. URL http://link.aps.org/doi/10.1103/PhysRevB.91.115411

  118. C.J. Tabert, E.J. Nicol, Phys. Rev. Lett. 110, 197402 (2013). doi:10.1103/PhysRevLett.110.197402. URL http://link.aps.org/doi/10.1103/PhysRevLett.110.197402

  119. C.J. Tabert, E.J. Nicol, Phys. Rev. B 88, 085434 (2013). doi:10.1103/PhysRevB.88.085434. URL http://link.aps.org/doi/10.1103/PhysRevB.88.085434

  120. N. Singh, U. Schwingenschlgl, Phys. Status Solidi (RRL) Rapid Res. Lett. 8(4) (2014). doi:10.1002/pssr.201409025. URL http://dx.doi.org/10.1002/pssr.201409025

    Google Scholar 

  121. V.Y. Tsaran, S.G. Sharapov, Phys. Rev. B 90, 205417 (2014). doi:10.1103/PhysRevB.90.205417. URL http://link.aps.org/doi/10.1103/PhysRevB.90.205417

  122. C.P. Chang, J. Appl. Phys. 110(1), 013725 (2011). doi:http://dx.doi.org/10.1063/1.3603040. URL http://scitation.aip.org/content/aip/journal/jap/110/1/10.1063/1.3603040

    Google Scholar 

  123. J.M. Luttinger, W. Kohn, Phys. Rev. 97(4), 869 (1955)

    Article  Google Scholar 

  124. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. Lett. 98, 157402 (2007). doi:10.1103/PhysRevLett.98.157402. URL http://link.aps.org/doi/10.1103/PhysRevLett.98.157402

  125. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  Google Scholar 

  126. Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.W. Tan, M. Fazlollahi, J.D. Chudow, J.A. Jaszczak, H.L. Stormer, P. Kim, Phys. Rev. Lett. 96, 136806 (2006). doi:10.1103/PhysRevLett.96.136806. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.136806

  127. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Phys. Rev. Lett. 98, 197403 (2007). doi:10.1103/PhysRevLett.98.197403. URL http://link.aps.org/doi/10.1103/PhysRevLett.98.197403

  128. K. Shakouri, P. Vasilopoulos, V. Vargiamidis, F.M. Peeters, Phys. Rev. B 90, 235423 (2014). doi:10.1103/PhysRevB.90.235423. URL http://link.aps.org/doi/10.1103/PhysRevB.90.235423

  129. N.J. Roome, J.D. Carey, ACS Appl. Mater. Interfaces. doi:10.1021/am501022x. URL http://pubs.acs.org/doi/abs/10.1021/am501022x

    Google Scholar 

  130. G. Berdiyorov, F. Peeters, RSC Adv. 4(3), 1133 (2014)

    Article  Google Scholar 

  131. H. peng Li, R. qin Zhang, EPL (Europhy. Lett.) 99(3), 36001 (2012). URL http://stacks.iop.org/0295-5075/99/i=3/a=36001

    Google Scholar 

  132. L. Wang, H. Sun, J. Mol. Model. 18, 4811 (2012). URL http://dx.doi.org/10.1007/s00894-012-1482-4. 10.1007/s00894-012-1482-4

  133. M. Hu, X. Zhang, D. Poulikakos, Phys. Rev. B 87, 195417 (2013). doi:10.1103/PhysRevB.87.195417. URL http://link.aps.org/doi/10.1103/PhysRevB.87.195417

  134. Q.X. Pei, Y.W. Zhang, Z.D. Sha, V.B. Shenoy, J. Appl. Phys. 114(3), 033526 (2013). doi:10.1063/1.4815960

    Article  Google Scholar 

  135. T. Ng, J. Yeo, Z. Liu, Int.J. Mech. Mater. Des. 9, 105 (2013). doi:10.1007/s10999-013-9215-0. URL http://dx.doi.org/10.1007/s10999-013-9215-0

    Google Scholar 

  136. B. Liu, C.D. Reddy, J. Jiang, H. Zhu, J.A. Baimova, S.V. Dmitriev, K. Zhou, J. Phys. D Appl. Phys. 47(16), 165301 (2014). URL http://stacks.iop.org/0022-3727/47/i=16/a=165301

  137. J.J. Yeo, Z.S. Liu, J. Comput. Theor. Nanosci. 11(8), 1790 (2014-08-01T00:00:00). doi:10.1166/jctn.2014.3568. URL http://www.ingentaconnect.com/content/asp/jctn/2014/00000011/00000008/art00011

    Google Scholar 

  138. X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, G. Su, Phys. Rev. B 89, 054310 (2014). doi:10.1103/PhysRevB.89.054310. URL http://link.aps.org/doi/10.1103/PhysRevB.89.054310

  139. Z. Wang, T. Feng, X. Ruan, J. Appl. Phys. 117(8), 084317 (2015). doi:http://dx.doi.org/10.1063/1.4913600. URL http://scitation.aip.org/content/aip/journal/jap/117/8/10.1063/1.4913600

    Google Scholar 

  140. X. Zhang, H. Bao, M. Hu, Nanoscale 7, 6014 (2015). Doi:10.1039/C4NR06523A. URL http://dx.doi.org/10.1039/C4NR06523A

    Google Scholar 

  141. M. Kamatagi, J. Elliott, N. Sankeshwar, A. Lindsay Greer, in Physics of Semiconductor Devices, ed. by V.K. Jain, A. Verma, Environmental science and engineering (Springer International Publishing, 2014), pp. 617–619. doi:10.1007/978-3-319-03002-9157. URL http://dx.doi.org/10.1007/978-3-319-03002-9157

  142. B. Liu, J.A. Baimova, C.D. Reddy, S.V. Dmitriev, W.K. Law, X.Q. Feng, K. Zhou, Carbon 79(0), 236 (2014). doi:http://dx.doi.org/10.1016/j.carbon.2014.07.064. URL http://www.sciencedirect.com/science/article/pii/S0008622314007027

    Google Scholar 

  143. G. Liu, X.L. Lei, M.S. Wu, B. Xu, C.Y. Ouyang, EPL (Europhys. Lett.) 106(4), 47001 (2014). URL http://stacks.iop.org/0295-5075/106/i=4/a=47001

  144. G. Liu, X.L. Lei, M.S. Wu, B. Xu, C.Y. Ouyang, J. Phys. Condens. Matter 26(35), 355007 (2014). URL http://stacks.iop.org/0953-8984/26/i=35/a=355007

    Google Scholar 

  145. Y. Du, J. Zhuang, H. Liu, X. Xu, S. Eilers, K. Wu, P. Cheng, J. Zhao, X. Pi, K.W. See, G. Peleckis, X. Wang, S.X. Dou, ACS Nano 8(10), 10019 (2014). doi:10.1021/nn504451t. URL http://dx.doi.org/10.1021/nn504451t. PMID: 25248135

    Google Scholar 

  146. V.O. Özçelik, H.H. Gurel, S. Ciraci, Phys. Rev. B 88, 045440 (2013). doi:10.1103/PhysRevB.88.045440. URL http://link.aps.org/doi/10.1103/PhysRevB.88.045440

  147. R. Li, Y. Han, T. Hu, J. Dong, Y. Kawazoe, Phys. Rev. B 90, 045425 (2014). doi:10.1103/PhysRevB.90.045425. URL http://link.aps.org/doi/10.1103/PhysRevB.90.045425

  148. J. Gao, J. Zhang, H. Liu, Q. Zhang, J. Zhao, Nanoscale 5, 9785 (2013). doi:10.1039/C3NR02826G. URL http://dx.doi.org/10.1039/C3NR02826G

    Google Scholar 

  149. S. Li, Y. Wu, Y. Tu, Y. Wang, T. Jiang, W. Liu, Y. Zhao, Sci. Rep. 5(7881) (2015)

    Google Scholar 

  150. A. Manjanath, A.K. Singh, Chem. Phys. Lett. 592(0), 52 (2014). doi:10.1016/j.cplett.2013.12.010. URL http://www.sciencedirect.com/science/article/pii/S0009261413014905

    Google Scholar 

  151. V.V. Hoang, H.T.C. Mi, J. Phys. D Appl. Phys. 47(49), 495303 (2014). URL http://stacks.iop.org/0022-3727/47/i=49/a=495303

  152. M.Q. Le, D.T. Nguyen, Appl. Phys. A, 1–9 (2014). doi:10.1007/s00339-014-8904-3. URL http://dx.doi.org/10.1007/s00339-014-8904-3

    Google Scholar 

  153. M.P. Lima, A. Fazzio, A.J.R. da Silva, Phys. Rev. B 88, 235413 (2013). doi:10.1103/PhysRevB.88.235413. URL http://link.aps.org/doi/10.1103/PhysRevB.88.235413

  154. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012)

    Google Scholar 

  155. P. Gori et al., Thermophysical properties of the novel 2D materials graphene and silicene: insights from Ab initio calculations. Energy Proc. 45, 512 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok C. Lew Yan Voon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lew Yan Voon, L.C. (2016). Physical Properties of Silicene. In: Spencer, M., Morishita, T. (eds) Silicene. Springer Series in Materials Science, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-28344-9_1

Download citation

Publish with us

Policies and ethics