Advertisement

Nanoscale Morphology from Donor–Acceptor Block Copolymers: Formation and Functions

  • David Heinrich
  • Martin Hufnagel
  • Chetan Raj Singh
  • Matthias Fischer
  • Shahidul Alam
  • Harald Hoppe
  • Thomas Thurn-AlbrechtEmail author
  • Mukundan Thelakkat
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

General design principles of donor–acceptor block copolymers are reviewed and specific results arising from block copolymers consisting of semicrystalline poly(3-hexylthiophene-2,5-diyl) (P3HT) blocks of appreciably high molecular weight and acceptor blocks carrying pendant perylene bisimides or fullerene derivatives are summarized. The chapter is structured according to the building blocks P3HT, poly(perylene bisimide acrylate), and a polystyrene copolymer grafted with phenyl-C61-butyric acid methyl ester used for the synthesis of the corresponding block copolymers, and in each part the synthetic challenges, structure formation, and consequences for charge transport, and in some cases photovoltaic properties, are addressed.

Keywords

Crystallization Donor-acceptor block copolymers Microphase separation Poly(3-hexylthiophene-25-diyl) Scattering techniques Self-assembly 

Notes

Acknowledgments

We acknowledge financial support from the German Research Foundation (DFG) within the priority program SPP1355, projects HO 3981/6, Th 807/3, and TH 1281/1. Part of the results was obtained from experiments on beamlines ID10 and Dubble at the European Synchrotron Radiation Facility (ESRF), Grenoble, France.

References

  1. 1.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1476CrossRefGoogle Scholar
  2. 2.
    Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Appl Phys Lett 62:585CrossRefGoogle Scholar
  3. 3.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:789CrossRefGoogle Scholar
  4. 4.
    Yu G, Heeger AJ (1995) J Appl Phys 78:4510CrossRefGoogle Scholar
  5. 5.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498CrossRefGoogle Scholar
  6. 6.
    Hoppe H, Sariciftci NS (2004) J Mate Res 19:1924CrossRefGoogle Scholar
  7. 7.
    Hoppe H, Sariciftci NS (2008) Photoresponsive Polymers II 214:1Google Scholar
  8. 8.
    Chen JD, Cui CH, Li YQ, Zhou L, Ou QD, Li C, Li YF, Tang JX (2015) Adv Mater 27:1035CrossRefGoogle Scholar
  9. 9.
    Liu C, Yi C, Wang K, Yang YL, Bhatta RS, Tsige M, Xiao SY, Gong X (2015) ACS Appl Mater Interfaces 7:4928CrossRefGoogle Scholar
  10. 10.
    Huang F (2015) Sci China Chem 58:190CrossRefGoogle Scholar
  11. 11.
    Liu YH, Zhao JB, Li ZK, Mu C, Ma W, Hu HW, Jiang K, Lin HR, Ade H, Yan H (2014) Nat Commun 5Google Scholar
  12. 12.
    Zhang SQ, Ye L, Zhao WC, Yang B, Wang Q, Hou JH (2015) Sci China Chem 58:248CrossRefGoogle Scholar
  13. 13.
    Wu HB (2015) Sci China Chem 58:189CrossRefGoogle Scholar
  14. 14.
    Li YF (2015) Sci China Chem 58:188CrossRefGoogle Scholar
  15. 15.
    Etxebarria I, Ajuria J, Pacios R (2015) Org Electron 19:34CrossRefGoogle Scholar
  16. 16.
    Kimber RGE, Walker AB, Schröder-Turk GE, Cleaver DJ (2010) Phys Chem Chem Phys 12:844CrossRefGoogle Scholar
  17. 17.
    Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45CrossRefGoogle Scholar
  18. 18.
    Hoppe H, Glatzel T, Niggemann M, Schwinger W, Schaeffler F, Hinsch A, Lux-Steiner MC, Sariciftci NS (2006) Thin Solid Films 511:587CrossRefGoogle Scholar
  19. 19.
    Drees M, Hoppe H, Winder C, Neugebauer H, Sariciftci NS, Schwinger W, Schaffler F, Topf C, Scharber MC, Zhu ZG, Gaudiana R (2005) J Mater Chem 15:5158CrossRefGoogle Scholar
  20. 20.
    Nguyen LH, Hoppe H, Erb T, Gunes S, Gobsch G, Sariciftci NS (2007) Adv Funct Mater 17:1071CrossRefGoogle Scholar
  21. 21.
    van Bavel SS, Barenklau M, de With G, Hoppe H, Loos J (2010) Adv Funct Mater 20:1458CrossRefGoogle Scholar
  22. 22.
    Synooka O, Eberhardt KR, Singh CR, Hermann F, Ecke G, Ecker B, von Hauff E, Gobsch G, Hoppe H (2014) Adv Energy Mater 4:10CrossRefGoogle Scholar
  23. 23.
    Sachs-Quintana IT, Heumuller T, Mateker WR, Orozco DE, Cheacharoen R, Sweetnam S, Brabec CJ, McGehee MD (2014) Adv Funct Mater 24:3978CrossRefGoogle Scholar
  24. 24.
    Wantz G, Derue L, Dautel O, Rivaton A, Hudhomme P, Dagron-Lartigau C (2014) Polym Int 63:1346CrossRefGoogle Scholar
  25. 25.
    Vandenbergh J, Conings B, Bertho S, Kesters J, Spoltore D, Esiner S, Zhao J, Van Assche G, Wienk MM, Maes W, Lutsen L, Van Mele B, Janssen RAJ, Manca J, Vanderzande DJM (2011) Macromolecules 44:8470CrossRefGoogle Scholar
  26. 26.
    Cardinaletti I, Kesters J, Bertho S, Conings B, Piersimoni F, D’Haen J, Lutsen L, Nesladek M, Van Mele B, Van Assche G, Vandewal K, Salleo A, Vanderzande D, Maes W, Manca JV (2014) J Photonics Energy 4:1–12. Article Number 040997Google Scholar
  27. 27.
    Derue L, Dautel O, Tournebize A, Drees M, Pan HL, Berthumeyrie S, Pavageau B, Cloutet E, Chambon S, Hirsch L, Rivaton A, Hudhomme P, Facchetti A, Wantz G (2014) Adv Mater 26:5831CrossRefGoogle Scholar
  28. 28.
    Khiev S, Derue L, Ayenew G, Medlej H, Brown R, Rubatat L, Hiorns RC, Wantz G, Dagron-Lartigau C (2013) Polym Chem 4:4145CrossRefGoogle Scholar
  29. 29.
    Sivula K, Ball ZT, Watanabe N, Frechet JMJ (2006) Adv Mater 18:206CrossRefGoogle Scholar
  30. 30.
    Bicciocchi E, Haeussler M, Rizzardo E, Scully AD, Ghiggino KP (2015) J Polym Sci, Polym Chem Ed 53:888CrossRefGoogle Scholar
  31. 31.
    Heuken M, Komber H, Erdmann T, Senkovskyy V, Kiriy A, Voit B (2012) Macromolecules 45:4101CrossRefGoogle Scholar
  32. 32.
    Johnson K, Huang YS, Huettner S, Sommer M, Brinkmann M, Mulherin R, Niedzialek D, Beljonne D, Clark J, Huck WTS, Friend RH (2013) J Am Chem Soc 135:5074CrossRefGoogle Scholar
  33. 33.
    Singh CR (2013) Dissertation, TU Ilmenau, GermanyGoogle Scholar
  34. 34.
    Yassar A, Miozzo L, Gironda R, Horowitz G (2013) Prog Polym Sci 38:791CrossRefGoogle Scholar
  35. 35.
    de Boer B, Stalmach U, van Hutten PF, Melzer C, Krasnikov VV, Hadziioannou G (2001) Polymer 42:9097CrossRefGoogle Scholar
  36. 36.
    de Boer B, Stalmach U, Melzer C, Hadziioannou G (2001) Synth Met 121:1541CrossRefGoogle Scholar
  37. 37.
    Zhang QL, Cirpan A, Russell TP, Emrick T (2009) Macromolecules 42:1079CrossRefGoogle Scholar
  38. 38.
    van der Veen MH, de Boer B, Stalmach U, van de wetering KI, Hadziioannou G (2004) Macromolecules 37:3673Google Scholar
  39. 39.
    Sommer M, Huettner S, Thelakkat M (2010) Complex Macromol Syst II 228:123CrossRefGoogle Scholar
  40. 40.
    Sommer M, Huettner S, Thelakkat M (2010) J Mater Chem 20:10788CrossRefGoogle Scholar
  41. 41.
    Hufnagel M, Fischer M, Thurn-Albrecht T, Thelakkat M (2015) Polym Chem 6:813CrossRefGoogle Scholar
  42. 42.
    Darling SB (2009) Energy Environ Sci 2:1266CrossRefGoogle Scholar
  43. 43.
    Nakabayashi K, Mori H (2014) Materials 7:3274CrossRefGoogle Scholar
  44. 44.
    Bu LJ, Guo XY, Yu B, Qu Y, Xie ZY, Yan DH, Geng YH, Wang FS (2009) J Am Chem Soc 131:13242CrossRefGoogle Scholar
  45. 45.
    Sary N, Richard F, Brochon C, Leclerc N, Leveque P, Audinot JN, Berson S, Heiser T, Hadziioannou G, Mezzenga R (2010) Adv Mater 22:763CrossRefGoogle Scholar
  46. 46.
    Miyanishi S, Zhang Y, Tajima K, Hashimoto K (2010) Chem Commun 46:6723CrossRefGoogle Scholar
  47. 47.
    Scherf U, Gutacker A, Koenen N (2008) Acc Chem Res 41(9):1086CrossRefGoogle Scholar
  48. 48.
    Miyanishi S, Zhang Y, Hashimoto K, Tajima K (2012) Macromolecules 45:6424CrossRefGoogle Scholar
  49. 49.
    Barrau S, Heiser T, Richard F, Brochon C, Ngov C, van de Wetering K, Hadziioannou G, Anokhin DV, Ivanov DA (2008) Macromolecules 41:2701CrossRefGoogle Scholar
  50. 50.
    Lee JU, Cirpan A, Emrick T, Russell P, Ho W, Russell TP, Jo WH (2009) J Mater Chem 19:1483CrossRefGoogle Scholar
  51. 51.
    Guo CH, Lin YH, Witman MD, Smith KA, Wang C, Hexemer A, Strzalka J, Gomez ED, Verduzco R (2013) Nano Lett 13:2957CrossRefGoogle Scholar
  52. 52.
    Ku S-Y, Brady MA, Treat ND, Cochran JE, Robb MJ, Kramer EJ, Chabinyc ML, Hawker CJ (2012) J Am Chem Soc 134:16040CrossRefGoogle Scholar
  53. 53.
    Olsen BD, Segalman RA (2008) Mater Sci Eng R Rep 62:37CrossRefGoogle Scholar
  54. 54.
    Loo YL, Register RA, Ryan AJ (2002) Macromolecules 35:2365CrossRefGoogle Scholar
  55. 55.
    Li S, Myers SB, Register RA (2011) Macromolecules 44:8835CrossRefGoogle Scholar
  56. 56.
    Lohwasser RH, Gupta G, Kohn P, Sommer M, Lang AS, Thurn-Albrecht T, Thelakkat M (2013) Macromolecules 46:4403CrossRefGoogle Scholar
  57. 57.
    Yamamoto T, Sanechika K, Yamamoto AJ (1980) Polym Sci Polym Lett Ed 18:9Google Scholar
  58. 58.
    Lin JWP, Dudek LP (1980) J Polym Sci, Polym Chem Ed 18:2869CrossRefGoogle Scholar
  59. 59.
    Jen K-Y, Miller GG, Elsenbaumer RL (1986) J Chem Soc, Chem Commun 17:1346Google Scholar
  60. 60.
    McCullough RD, Lowe RD (1992) J Chem Soc, Chem Commun 1:70CrossRefGoogle Scholar
  61. 61.
    Chen T-A, Rieke RD (1992) J Am Chem Soc 114:10087CrossRefGoogle Scholar
  62. 62.
    Loewe RS, Khersonsky SM, McCullough RD (1999) Adv Mater 11:250CrossRefGoogle Scholar
  63. 63.
    Lohwasser RH, Thelakkat M (2011) Macromolecules 44:3388CrossRefGoogle Scholar
  64. 64.
    Yokoyama A, Miyakoshi R, Yokozawa T (2004) Macromolecules 37:1169CrossRefGoogle Scholar
  65. 65.
    Sheina EE, Liu J, Iovu MC, Laird DW, McCullough RD (2004) Macromolecules 37:3526CrossRefGoogle Scholar
  66. 66.
    Miyakoshi R, Yokoyama A, Yokozawa T (2005) J Am Chem Soc 127:17542Google Scholar
  67. 67.
    Iovu MC, Sheina EE, Gil RR, McCullough RD (2005) Macromolecules 38:8649CrossRefGoogle Scholar
  68. 68.
    Miyakoshi R, Yokoyama A, Yokozawa T (2004) Macromol Rapid Commun 25:1663CrossRefGoogle Scholar
  69. 69.
    Krasovskiy A, Straub BF, Knochel P (2006) Angew Chem Int Ed 45:159CrossRefGoogle Scholar
  70. 70.
    Wu S, Huang L, Tian H, Geng Y, Wang F (2011) Macromolecules 44:7558CrossRefGoogle Scholar
  71. 71.
    Jeffries-El M, Sauve G, McCullough RD (2005) Macromolecules 38:10346CrossRefGoogle Scholar
  72. 72.
    Tkachov R, Senkovskyy V, Komber H, Sommer J-U, Kiriy A (2010) J Am Chem Soc 132:7803CrossRefGoogle Scholar
  73. 73.
    Lohwasser RH, Thelakkat M (2012) Macromolecules 45:3070CrossRefGoogle Scholar
  74. 74.
    Prosa TJ, Winokur MJ, McCullough RD (1996) Macromolecules 29:3654CrossRefGoogle Scholar
  75. 75.
    Kline RJ, DeLongchamp DM, Fischer DA, Lin EK, Richter LJ, Chabinyc ML, Toney MF, Heeney M, McCulloch I (2007) Macromolecules 40:7960Google Scholar
  76. 76.
    Brinkmann M (2011) J Polym Sci B: Polym Phys 49:1218Google Scholar
  77. 77.
    Wu ZY, Petzold A, Henze T, Thurn-Albrecht T, Lohwasser RH, Sommer M, Thelakkat M (2010) Macromolecules 43:4646CrossRefGoogle Scholar
  78. 78.
    Balko J, Lohwasser RH, Sommer M, Thelakkat M, Thurn-Albrecht T (2013) Macromolecules 46:9642CrossRefGoogle Scholar
  79. 79.
    Pascui OF, Lohwasser RH, Sommer M, Thelakkat M, Thurn-Albrecht T, Saalwachter K (2010) Macromolecules 43:9401CrossRefGoogle Scholar
  80. 80.
    Singh CR, Gupta G, Lohwasser RH, Engmann S, Balko J, Thelakkat M, Thurn-Albrecht T, Hoppe H (2013) J Polym Sci B Polym Phys 51:943CrossRefGoogle Scholar
  81. 81.
    Malik S, Nandi AK (2002) J Polym Sci B 40:2073Google Scholar
  82. 82.
    Virkar AA, Mannsfeld S, Bao ZA, Stingelin N (2010) Adv Mater 22:3857CrossRefGoogle Scholar
  83. 83.
    Lindner SM, Thelakkat M (2004) Macromolecules 37:8832CrossRefGoogle Scholar
  84. 84.
    Hawker CJ, Bosman AW, Harth E (2001) Chem Rev 101:3661Google Scholar
  85. 85.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004Google Scholar
  86. 86.
    Tao Y, McCulloch B, Kim S, Segalman RA (2009) Soft Matter 5:4219CrossRefGoogle Scholar
  87. 87.
    Lang AS, Neubig A, Sommer M, Thelakkat M (2010) Macromolecules 43:7001CrossRefGoogle Scholar
  88. 88.
    Lang AS, Thelakkat M (2011) Polym Chem 2:2213Google Scholar
  89. 89.
    Lang AS, Muth M-A, Heinrich CD, Carassco-Orozco M, Thelakkat M (2013) J Polym Sci B Polym Phys 51:1480CrossRefGoogle Scholar
  90. 90.
    Mott NF, Gurney RW (1940) Electronic processes in ionic crystals. The Clarendon Press, OxfordGoogle Scholar
  91. 91.
    Steyrleuthner R, Schubert M, Jaiser F, Blakesley JC, Chen Z, Facchetti A, Neher D (2010) Adv Mater 22:2799CrossRefGoogle Scholar
  92. 92.
    Mueller CJ, Singh CR, Fried M, Huettner S, Thelakkat M (2015) Adv Funct Mater 25:2725--2736Google Scholar
  93. 93.
    Kohn P, Ghazaryan L, Gupta G, Sommer M, Wicklein A, Thelakkat M, Thurn-Albrecht T (2012) Macromolecules 45:5676CrossRefGoogle Scholar
  94. 94.
    Stalmach U, de Boer B, Videlot C, van Hutten PF, Hadziioannou GJ (2000) Am Chem Soc 122:5464–5472CrossRefGoogle Scholar
  95. 95.
    Hawker CJ (1994) Macromolecules 27:4836–4837CrossRefGoogle Scholar
  96. 96.
    Liu B, Bunker CE, Sun Y-P (1996) Chem Commun 1241Google Scholar
  97. 97.
    Yang C, Lee JK, Heeger AJ, Wudl FJ (2009) Mater Chem 19:5416–5423CrossRefGoogle Scholar
  98. 98.
    Heuken M, Komber H, Voit B (2012) Macromol Chem Phys 213:97–107CrossRefGoogle Scholar
  99. 99.
    Zhang N, Schricker S, Wudl F, Prato M (1995) Chem Mater 7:441–442CrossRefGoogle Scholar
  100. 100.
    Kim J, Yun MH, Lee J, Kim JY, Wudl F, Yang C (2011) Chem Commun 47:3078–3080CrossRefGoogle Scholar
  101. 101.
    Eo M, Lee S, Park MH, Lee MH, Yoo S, Do Y (2012) Macromol Rapid Commun 33:1119–1125CrossRefGoogle Scholar
  102. 102.
    Fang L, Liu P, Sveinbjornsson BR, Atahan-Evrenk S, Vandewal K, Osuna S, Jiménez-Osés G, Shrestha S, Giri G, Wei P, Salleo A, Aspuru-Guzik A, Grubbs RH, Houk KN, Bao Z (2013) J Mater Chem C 1:5747CrossRefGoogle Scholar
  103. 103.
    Hufnagel M, Muth M-A, Brendel JC, Thelakkat M (2014) Macromolecules 47:2324CrossRefGoogle Scholar
  104. 104.
    Adamopoulos G, Heiser T, Giovanella U, Ouldsaad S, Vandewetering K, Brochon C, Zorba T, Paraskevopoulos K, Hadziioannou G (2006) Thin Solid Films 511–512:371–376CrossRefGoogle Scholar
  105. 105.
    Perrin L, Nourdine A, Planes E, Carrot C, Alberola N, Flandin L (2013) J Polym Sci B Polym Phys 51:291–302CrossRefGoogle Scholar
  106. 106.
    Sommer M, Lang AS, Thelakkat M (2008) Angw Chem Int Ed 47:7901CrossRefGoogle Scholar
  107. 107.
    Rajaram S, Armstrong PB, Kim BJ, Fréchet JMJ (2009) Chem Mater 21:1775CrossRefGoogle Scholar
  108. 108.
    Gupta G, Singh CR, Lohwasser RH, Himmerlich M, Krischok S, Müller-Buschbaum P, Thelakkat M, Hoppe H, Thurn-Albrecht T (2015) ACS Appl Mater Interfaces. doi: 10.1021/am5049948 Google Scholar
  109. 109.
    Sommer M, Hüttner S, Steiner U, Thelakkat M (2009) Appl Phys Lett 95:183308(1–3)Google Scholar
  110. 110.
    Singh CR, Sommer M, Himmerlich M, Wicklein A, Krischok S, Thelakkat M, Hoppe H (2011) Phys Status Solidi RRL 5:247CrossRefGoogle Scholar
  111. 111.
    Gholamkhass B, Holdcroft S (2010) Chem Mater 22:5371–5376CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • David Heinrich
    • 1
  • Martin Hufnagel
    • 1
  • Chetan Raj Singh
    • 1
  • Matthias Fischer
    • 2
  • Shahidul Alam
    • 3
  • Harald Hoppe
    • 3
  • Thomas Thurn-Albrecht
    • 2
    Email author
  • Mukundan Thelakkat
    • 1
  1. 1.Applied Functional Polymers, Macromolecular Chemistry I, University of BayreuthBayreuthGermany
  2. 2.Institut für Physik, Martin-Luther-UniversitätHalleGermany
  3. 3.Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University JenaJenaGermany

Personalised recommendations